DTN Network Management

Edward J. Birrane, Ph.D.
Johns Hopkins University, Applied Physics Laboratory (JHU/APL)
Edward.Birrane@jhuapl.edu
(W) 443-778-7423
- Examined uniqueness of the problem, 2011-2013
 - Some early pubs defining the problem as related to DTN
 - E. Birrane, S. Burleigh, V. Cerf, “Defining Tolerance: Impacts of Delay and Disruption when Managing Challenged Networks,”
 - E. Birrane, H. Kruse, “Delay-Tolerant Network Management: The Definition and Exchange of Infrastructure Information in High Delay Environments”
 - Reviewed popular engineering approaches
 - Autonomous fault protection schemes
 - Mobile code and scripting schemes
 - Spacecraft telemetry schedules
 - Deterministic rule-based expert systems

- Delay-Tolerant Network Management Protocol (DTNMP) 2013
 - Published to DTNRG, Initial implementation by NASA
 - Utility outside of NASA network management

- Renamed as Asynchronous Management Protocol (AMP) 2015
 - Submitted as set of IDs to DTNWG.
How Do We Manage Networks Today? Do we need a new thing?

Low-latency approaches to network management fail to scale with increasing delays and disruptions.

- Rich set of evolving capabilities
 - Simple Network Management Protocol (SNMP).
 - Pull model of information from managed devices.
 - Support for “traps” to push unreliable notifications of pre-defined events.
 - Network Configuration Protocol (NETCONF).
 - XML-based, session-based remote-procedure call (RPC) interface for node configuration.
 - Remote Network Monitoring MIB (RMON).
 - Mechanisms for exchanging network monitoring data.

- Poor scaling with delays, disruptions, or commanding
 - Focus on getting data to operators.
 - Less focus on in-situ response options.
 - Reliance on scripting and mobile code which is not always a deployment option.

New capabilities have come online such as RESTConf, Yang 1.1, and YangPush.

These capabilities add more “push” semantics, but still struggle to operate in highly disrupted scenarios. The AMA is being reworked to focus more effectively on the unique characteristics of challenged networks.
Asynchronous Management Architecture

Let’s think through an extreme use case...
Intersection: Spacecraft and Data Center?

How do we manage partitioned networks, such as:
- New Space Networks
- Challenged Sensor Networks
- Vehicle Networks
- Resource-Constrained Networks
- Disruption-Tolerant Networks

Spacecraft have this problem, what do they do?
- Autonomy models
- VERY efficient encodings
- Low requirements for processing.

Can we bring these worlds together in an IETF-useful way?

What does a healthy intersection of these worlds look like?
- Automation and Autonomy Model
- Network Management Standards
- Compatibility with commercial work
Asynchronous Management is network management via configured, deterministic autonomy.

It is defined as:
Work is ongoing in the DTN-WG

Architecture
- Asynchronous Management Architecture (AMA) (Informational)
- Concise Binary Object Representation (CBOR) (Specification)

Data Model
- App. Data Model Template (ADM Template) (Specification)
- YANG Model (Specification)
- Agent ADM (Specification)
- BP ADM (Specification)
- BPSEC ADM (Specification)
- CGR ADM (Specification)
- LTP ADM (Specification)
- ION ADM (Specification)

Protocol
- Asynchronous Management Protocol (AMP) (Specification)
- ION Agent (Implementation)
- ION Mgr (Implementation)
- DTN2 Agent (Implementation)
Active Drafts (For Reference)

- https://datatracker.ietf.org/doc/draft-birrane-dtn-adm-ion-ltpadmin/
AMA: Overview

• Service Definitions
 - Configuration: Change settings on an Agent.
 - Reporting: Receive performance information from an Agent.
 - Autonomous Parameterized Control: Change Agent Behavior.
 - Administration: Fine-grained access to abilities.

• Desirable Properties
 - Intelligent Information Push: Can’t rely on others.
 - Minimize Message Size: Increase probability of delivery.
 - Absolute Data Identification: pre-shared, global naming when possible.
 - Custom Data Definition: Only send minimal necessary data sets.
 - Autonomous Operation: Decisions local to Agent based on its config.
AMA: The Simple System Model

• Agents
 - Run on Managed Devices
 - Configure/Report on devices
 - Heavy autonomy and parameterized control

• Manager(s)
 - Collect/Fuse data from Agents
 - Configure Agent behavior
 - Open-loop control

• ADMs
 - Well-named Data and Controls
 - Superset of MIB
 - Move to describe them in YANG
 - Preconfiguration reduces msg size
• Separate the data specification from its encoding.
 - Use AMP specification to define how to compactly encode ADM items

• ADMs Schemas will define logical models
 - Designed to identify minimum set of information per data model
 - Remove any “encoding hints” from the models.
 - Use the YANG modelling language
 - Tools exist to validate YANG schemas for correctness and plot dependencies.

• ADMs will be defined in JSON
 - Conventions will be defined to make JSON writing expressive and “easy”
 - Reuse existing notations/delimiters where possible (query string)

• Define compilers/adapters
 - Presuppose adapters/compilers to generate encodings as necessary
Asynchronous Management Model (AMM)

- "Atomic" Elements
 - **EDDs**: collected by agents.
 - **Literals**: useful constants.
 - **Ops**: opcodes for math functions.
 - **Ctrls**: opcodes for agent behavior.
 - **Tables**: Structured data sets

- "Dynamic" Elements
 - **Vars**: strong-typed variables
 - **Macro**: Ordered set ofCtrls.
 - **Rpts**: Ordered sets of data
 - **Rules**: Time or State based autonomy.

An AMM defines 9 types of data for each application/protocol managed in the AMA.
"edd": [
{
 "name": "num_pend_reassembly",
 "type": "UINT",
 "description": "number of bundles pending reassembly"
},

{
 "name": "bundles_by_priority",
 "type": "UINT",
 "parmspec": [{"type": "UINT", "name": "mask"}],
 "description": "Number of bundles for the given priority. Priority is given as a priority mask where Bulk=0x1, normal=0x2, express=0x4. Any bundles matching any of the masked priorities will be included in the returned count"
}]}
"table-templates": [
 {
 "name": "ciphersuites",
 "columns": [{"type":"STR", "name":"csname"}]
 },
 {
 "name": "bib_rules",
 "columns": [{"type":"STR", "name":"SrcEid"},
 {"type":"STR", "name":"DestEid"},
 {"type":"UINT", "name":"TgtBlk"},
 {"type":"STR", "name":"csName"},
 {"type":"STR", "name":"keyName"}]
 },
 {
 "description": "This table lists supported ciphersuites."
 },
 {
 "description": "BIB Rules."
 }
],
Example: Controls

```
"controls": [ 
{
    "name": "node_contact_add",
    "parmspec": [ 
        {"type": "TS", "name": "start"},
        {"type": "TS", "name": "stop"},
        {"type": "UINT", "name": "node_id"},
        {"type": "STR", "name": "dest"},
        {"type": "FLOAT32", "name": "data_rate"},
        {"type": "FLOAT32", "name": "prob"}
    ],
    "description": "This control schedules a period of data transmission from node_id to dest. The period of transmission will begin at start and end at stop, and the rate of data transmission will be data_rate bytes/second. Our confidence in the contact defaults to 1.0, indicating that the contact is scheduled - not that non-occurrence of the contact is impossible, just that occurrence of the contact is planned and scheduled rather than merely imputed from past node behavior. In the latter case, confidence indicates our estimation of the likelihood of this potential contact."
}
```
Asynchronous Management Protocol

A CBOR encoding of ADM information.
AMP is:

- Independent of BP
 - AMP messages can use any transport.

- A binary encoding of ADM Information
 - CBOR is used because it is compact and well supported.
 - CBOR encoders can be < 10KB in size.

- A set of messages to exchange these encodings
 - Simple messaging, like SNMP and NETCONF
 - Register Agent
 - Report Set
 - Perform Control
 - Most AMP Agent control is captured in an AMP Agent ADM.

- A state machine
 - Describing the behavior of agents and managers in a network.
ION Reference Implementation
AMP Agent, AMP Text-Based Manager

• AMP in ION Release 4.0
 - Updated directory structure
 - Support for BPv6 and BPv7
 - Feature complete to latest AMP spec

• What’s New?
 - New directory design
 ▪ ADMs can be stored with their applications
 ▪ Linked as needed to agent/mgr
 - Endian-Neutral CBOR
 ▪ qcbor
 - Test Support
 ▪ Additional regression tests
ADM Auto Generation

- ION C-generating AMP Python Script (CampPython)
 - Github project
 - C API for AMP defined for ION (3.x or 4.x line)
 - Produces .c/.h files per ADM
 - Includes a user-customizable .c/.h) and “round-tripping”
 - `camp <adm.json> -c <old_impl.c> -s <old_impl.h>`
 - Adding and maintaining ADMs much simplified
 - But, now, lots of data. 200+ data items, ~100 controls/operators
value_t adm_bpsec_get_ciphersuite_names(tdc_t params)
{
 value_t result;
 /* +---+
 * |START CUSTOM FUNCTION get_ciphersuite_names BODY
 * +---+/

 char *tmp = bpsec_instr_get_csnames();
 result.value.as_ptr = STAKE(size));
 memcpy(result.value.as_ptr, tmp, size);
 SRELEASE(tmp);
 result.type = AMP_TYPE_STRING;

 /* +---+
 * |STOP CUSTOM FUNCTION get_ciphersuite_names BODY
 * +---+/

 return result;
}
AMP Manager SQL Schema

- **AMP Schema**
 - Abstracts any binary encoding from user.
 - SQL-enabled AMP Manager:
 - Polls DB for new info to send to AMP Agents.
 - Stores received agent information for visualization.

- **AMP-Specific Tables**
 - Data representations for constants, literals
 - Static ADM Information, Operator-defined data
 - Outgoing/Incoming message groups

- **CAMP integration**
 - CAMP generates SQL files from JSON ADMs

- **Testing**
 - SQL scripts to auto-populate tables for testing
Jean Chorin
- Visiting UMBC from Dresden (works for Marius)

NETCONF is “the” current NM protocol
- YANG is its modelling language

NETCONF isn’t a DTN solution
- Requires sessions and state. No Autonomy. XML encoding. Can’t send delta updates. Chatty, closed-loop control CONOPS.
- No S/C is going to run a NETCONF agent.

ADM <-> YANG converter
- Model mapping. Scripts to populate NETCONF stores from DTN.
- Handles asynchronous-to-synchronous data issues.
External Work: Integrate with NETCONF

From: Jean Chorin
External Work: Integrate with NETCONF

From: Jean Chorin
Live Demo from IETF 104
https://www.youtube.com/watch?v=-AT7mF8Gn94
amp.me – URI Decoding

Currently accepts CS08 Hex (0x...) AMP-CBOR (i.e. arri:0x...), or AMP URIs (i.e. arri://AANA...). This tool is experimental and some data types may not be fully implemented at this time.

Input: arri://AANA;amp.agent/ctrl_gen_rpc(arri://AANA;amp.agent/rpt.full_report())

Parsed As ARI

CBOR: e154105059225238187189410000

URI

arri://AANA;amp.agent/ctrl_gen_rpc(arri://AANA;amp.agent/rpt.full_report())

JSON

```
{
  "class": "ARI",
  "type": 3,
  "nameSpace": 1,
  "adm_type": 1,
  "svm_name": {
    "class": "AC",
    "value": {
      "class": "ART",
      "type": 3,
      "nameSpace": 1,
      "adm_type": 8
    }
  },
  "class": "TNVC",
  "value": {} 
}
```

<table>
<thead>
<tr>
<th>Input</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARI</td>
<td>arri://0x8718194100</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>ac://0x81871894100</td>
<td></td>
</tr>
<tr>
<td>TNVC</td>
<td>tnvc://0x05022538187189410000</td>
<td></td>
</tr>
<tr>
<td>ARI</td>
<td>arri://0x115410505022538187189410000</td>
<td></td>
</tr>
</tbody>
</table>
CBOR Decoding & Re-encoding

Input (CBOR or URI)
- ari:/0x11541050502252381871819410000

Trace
<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>AMP_TYPE_CTRL</td>
</tr>
<tr>
<td>15</td>
<td>ARI.Nickname</td>
</tr>
<tr>
<td>4105</td>
<td>ARI.name</td>
</tr>
<tr>
<td>05</td>
<td>TNVC.flag</td>
</tr>
<tr>
<td>2</td>
<td>TNVC.length</td>
</tr>
<tr>
<td>25</td>
<td>TNVC.type</td>
</tr>
<tr>
<td>23</td>
<td>TNVC.type</td>
</tr>
<tr>
<td>81</td>
<td>AC.start</td>
</tr>
<tr>
<td>67</td>
<td>AMP_TYPE.RPTTPL</td>
</tr>
<tr>
<td>1819</td>
<td>ARI.Nickname</td>
</tr>
<tr>
<td>4100</td>
<td>ARI.name</td>
</tr>
<tr>
<td>00</td>
<td>TNVC.flag</td>
</tr>
<tr>
<td>0</td>
<td>AC</td>
</tr>
<tr>
<td>0</td>
<td>TNVC</td>
</tr>
<tr>
<td>ARI</td>
<td>ari:/0x871819410000</td>
</tr>
</tbody>
</table>

CBOR Encoding

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARI</td>
<td>ari:/0x871819410000</td>
</tr>
<tr>
<td>AC</td>
<td>ac:/0x818718194100</td>
</tr>
<tr>
<td>TNVC</td>
<td>tnvc:/0x0502252381871819410000</td>
</tr>
<tr>
<td>ARI</td>
<td>ari:/0xc11541050502252381871819410000</td>
</tr>
</tbody>
</table>

Diagram
- **ARI**
 - AMP_TYPE_CTRL - 1
 - **Nickname**
 - TODO
 - 0x15 = 21
 - NS=1
 - Type=CTRL=1
 - **Name**
 - 05
SQL Insertion

```javascript
(undefined)

[Object: null prototype] {
  ns: 'IANA:amp.agent',
  namespace: 'IANA',
  nsname: 'amp.agent',
  cmd_type: 'Ctrl',
  cmd_name: 'gen_rpts',
  args: '[ari:/IANA:amp.agent/Rptt.full_report()],[]'
}
	nvc fromuri part= [ari:/IANA:amp.agent/Rptt.full_report()] from uri= ['[ari:/IANA:amp.agent/Rptt.full_report()]', '[]'] type= AC

[Object: null prototype] {
  ns: 'IANA:amp.agent',
  namespace: 'IANA',
  nsname: 'amp.agent',
  cmd_type: 'Rptt',
  cmd_name: 'full_report',
  args: ''
}
	nvc fromuri part= [] from uri= ['[ari:/IANA:amp.agent/Rptt.full_report()]', '[]'] type= TNWC

insertCtrl( 112, null, ari:/IANA:amp.agent/Rptt.full_report() )
Created message group with id of 1
Done
```
ADMs Listing

- This listing is generated by parsing the ADM JSON files
- Future enhancements would allow viewing details per ADM from the JSON files and/or provide an equivalent view from the MySQL database.

<table>
<thead>
<tr>
<th>Name</th>
<th>Index</th>
<th>IETF Source</th>
<th>Issuer</th>
<th>Controls</th>
<th>Edits</th>
<th>Mids</th>
<th>Rptis</th>
<th>Tbis</th>
<th>Vars</th>
<th>Conts</th>
<th>Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>amp.agent</td>
<td>1</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-agent-03</td>
<td>IANA</td>
<td>16</td>
<td>14</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>bp.agent</td>
<td>2</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-bp-03</td>
<td>IANA</td>
<td>1</td>
<td>29</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tt.agent</td>
<td>3</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-tt-01</td>
<td>IANA</td>
<td>1</td>
<td>42</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lpspec</td>
<td>4</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-lpspec-01</td>
<td>IANA</td>
<td>19</td>
<td>55</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bpadm</td>
<td>5</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-bpadm-01</td>
<td>IANA</td>
<td>26</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>npadm</td>
<td>6</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-npadmin-00</td>
<td>IANA</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ion.admin</td>
<td>7</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-ionadmin-01</td>
<td>IANA</td>
<td>15</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ionsec</td>
<td>8</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-ionsec-01</td>
<td>IANA</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ita.admin</td>
<td>9</td>
<td>https://tools.ietf.org/html/draft-birrne-dn-adm-itaadmin-01</td>
<td>IANA</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>157</td>
<td>36</td>
<td>6</td>
<td>24</td>
<td>2</td>
<td>1</td>
<td>53</td>
</tr>
</tbody>
</table>
• https://youtu.be/dNvIdiZklWY?t=7078