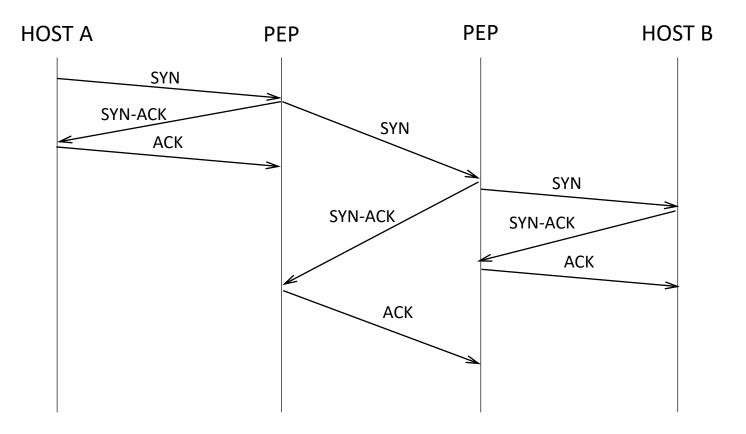
Recommendations on using VPN over SATCOM access

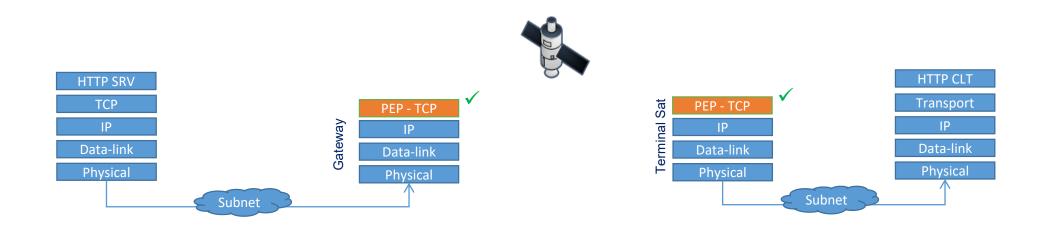
David PRADAS (VIVERIS) Romain Guilloteau (VIVERIS TECHNOLOGIES) Guillaume Pelat (VIVERIS TECHNOLOGIES) Nicolas Kuhn (CNES)

VPN are everywhere

- Working from home, interconnecting entreprise networks
 ➢increase security needs
 ➢VPN helps !
- Using HTTPS may not be enough


➤added layer of security

Crossing a non-secured network will be safe

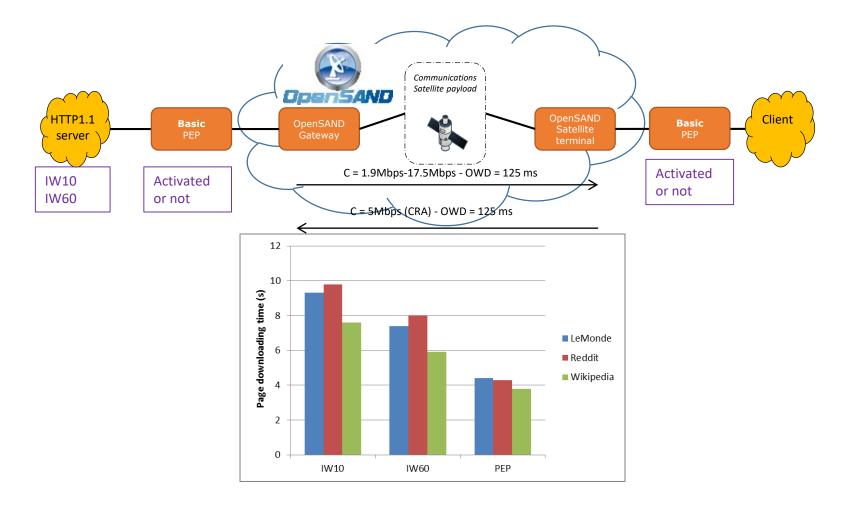

- Lots of VPN solutions and configurations
 - Wireguard (IPSec)
 - OpenVPN (OpenSSL, SSL, TLS) on top of UDP or TCP

TCP-splitting middleboxes are everywhere too! (and in particular in SATCOM systems)

• SATCOM systems typically deploy TCP Proxy (PEP) [RFC3135]

TCP-splitting middleboxes are everywhere too! (and in particular in SATCOM systems)

٠


٠

- Connection initialization:
 - setting up the connection requires three round trips, impacting the moment from which the actual data can be transmitted
 - Improved by custom TCP initial windows in TCP PEP
- Window size required:
 - to fully exploit the available capacity, it is necessary to increase the sending buffers are the client and the server
 - Improved by custom TCP buffers in TCP PEP

Reliability:


- packet loss detection and correction is slow (end-to-end retransmission performance is also affected on GEO access)
- Loss recovery in splitted in three segments
- Convergence of congestion control:
 - the exponential increase in data rate is considerably slowed down for a GEO satellite.
 - Improved by custom TCP AIMD in TCP PEP

TCP-splitting middleboxes are everywhere too! (and in particular in SATCOM systems)

Rationale of the study

- I have VPN and PEP ... do they cooperate ?
- What VPN should I use ?
- If I can choose my congestion control ... what should it be ?

(Option b)

Configurations

- SATCOM
 - GEO : RTT of 500 ms, bottleneck bandwidth of 10 Mbps
 - LEO : variable RTT, botteleneck bandwidth of 10 Mbps
 - Random losses on the SATCOM link
- PEP
 - Before (Option B) or after (Option A) the VPN tunnel
 - CUBIC, CUBIC without Hystart and BBRv2
 - Various initial congestion windows
- Same congestion control applied to all the nodes
- VPN
 - Wireguard
 - OpenVPN UDP
 - OpenVPN TCP
- Application : 30MB file transfer

Results – no loss scenario

					lo loss LEO				
VPN	None		OpenVPN TCP			OpenV	PN UDP	Wire uard	
PEP	None	None	Α		В	None	В	None	В
CUBIC w/o Hystart	26,8	29,8	29,9		29,5	28,9	28,7	28,3	28,0
CUBIC w Hystart	27,1	29,6	32,0		29,3	28,9	28,6	28,4	28,0
BBRv2	27,9	30,8	31,6		30,3	29,7	29,2	29,2	28,7
				I o	o Loss GEO				
VPN	None		OpenVPN TCP		OpenVPN UDP		Wire _f uard		
PEP	None	None	Α		В	None	В	None	В
CUBIC w/o Hystart	29,4	33,7	34,2		34,4	31,7	31,0	30,9	30,4
CUBIC w Hystart	29,9	34,5	38,6		34,1	31,4	31,0	33,0	30,5
BBRv2	32,8	35,7	39,8		35,4	33,9	33,4	33,4	32,2

- OpenVPN TCP in PEP position A: worst performance (i.e. "TCP in TCP" issue)
- •Wireguard with a PEP in position B : best performance
- OpenVPN UDP with/without PEP and Wireguard without PEP : fair performance

Results – loss scenario

				Loss LEO				
VPN	None		OpenVPN TCP		OpenV	PN UDP	Wireguard	
PEP	None	None	Δ	R	None	В	None	В
CUBIC w/o Hystart	244,7	181,4	179,2	190,1	347,2	249,1	336,1	242,3
CUBIC w Hystart	231,8	184.7	174.8	184,9	352,7	255,6	339,8	249,9
BBRv2	32,6	32,8	33,3	34,9	31,7	34,0	32,2	34,0
		1		Loss GEO	1			
VPN	None	OpenVPN TCP			OpenV	PN UDP	Wireguard	
PEP	None	None	А	В	None	В	None	B
	358,4	380,0	339,0	334,9	508,1	507,1	529,8	521,1
CUBIC w/o Hystart	556,4	300,0	/-					
CUBIC w/o Hystart	326.2	357.5	334.3	346.0	518.4	484.9	524.0	498.3

•Losses on the satellite link : BBRv2 as a transport layer protocol helps

• When the end-to-end congestion control can not be adapted, when the end-to-end transport is CUBIC

• OpenVPN TCP exhibits the best performance by reducing the transfer time

Summary

- No loss
 - Use wireguard with a PEP in B position (before the Wireguard instance)
 - CUBIC and BBRv2 exhibit (more or less) the same performance
- With losses
 - BBRv2 helps a lot
 - When BBRv2 is not possible, damages can be reduced with the usage of OpenVPN TCP
- Limits of the conclusion :
 - When losses are on the LAN, PEP can help a lot (split the recovery process)
 - In the study, losses are applied on the long-delay satellite link : PEP can not really help the loss recovery process
- More details on ArXiv paper
 - "Recommendations on using VPN over SATCOM"; David PRADAS, Romain Guilloteau, Guillaume Pelat, Nicolas Kuhn