TsuNAME: exploiting misconfiguration and vulnerability to DDoS DNS

Giovane C. M. Moura¹, Sebastian Castro², John Heidemann³, Wes Hardaker³ 1: SIDN Labs. 2: InternetNZ. 3: USC/ISI

IETF 112 MAPRG Virtual Meeting 2021-11-09

Prelude

- 1. Our paper appeared at ACM IMC 2021:
 - PDF: https://www.isi.edu/~johnh/PAPERS/Moura21b.pdf

TsuNAME: exploiting misconfiguration and vulnerability to DDoS DNS

Giovane C. M. Moura (1) Sebastian Castro (2) John Heidemann (3) Wes Hardaker (3) 1: SIDN Labs 2: InternetNZ 3: USC/ISI

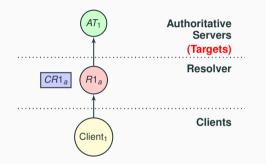
ABSTRACT

TheInternet's Domain Name System (DNS) is a part of every web request and e-mail exchange, so DNS failures can be catastrophic, taking out major websites and services. This paper identifies TsuNAME, a vulnerability where some recursive resolvers can greatly amplify other Internet infrastructure fail. For example, the Oct. 2016 denialof-service (DoS) attack against Dyn [5] made many prominent websites such as Twitter, Spotify, and Netflix unreachable to many of their customers [40]. Another DoS against Amazon's DNS service affected large number of services [61] in Oct. 2019.

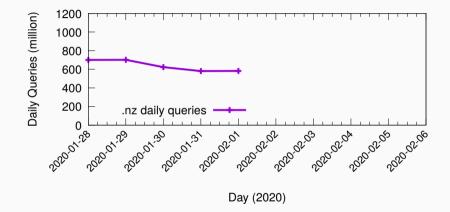
- 2. We identify problems and propose solutions for current RFCs:
 - New draft: draft-moura-dnsop-negative-cache-loop

- The DNS is one of the **core** services on the Internet
- People notice it when it breaks:
 - 2016 DDoS against Dyn DNS 2016 [1, 6]
 - affected Netflix, Spotify, Airbnb, Reddit, and others.
 - 2019 DDoS against Amazon AWS [7]

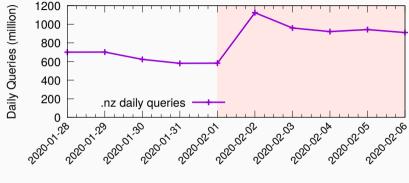
The New York Times


Hackers Used New Weapons to Disrupt Major Websites Across U.S.

f 🔉 🖌 🗖 🥕 🔍

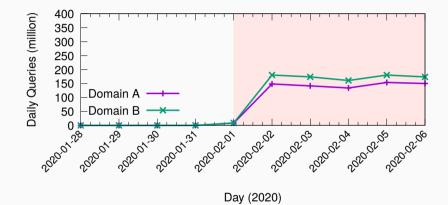

A man of the areas avaariancing problems as of Briday afternoon according to

Two main type of DNS servers


TsuNAME affects traffic to authoritative servers

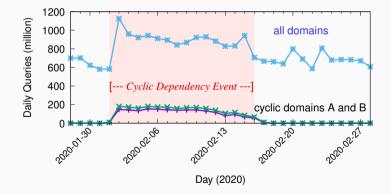
New Zealand's .nz event

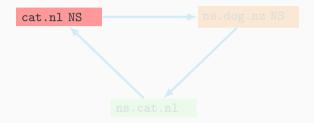
Normal traffic on . nz authoritative servers


Big traffic increase

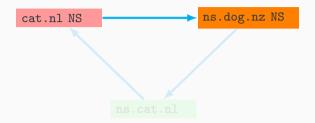
Day (2020)

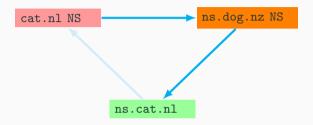
- Operators see something strange:
 - 50 % traffic surge on .nz authoritative servers

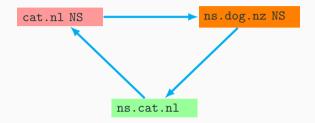

New Zealand's .nz event: an accident?

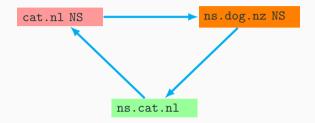


- Two domain names suddenly start to receive millions of queries
- a DDoS attack?


Cause: DNS Loops (cyclic dependency)




- Described in RFC1536, and later in Pappas2004 [5]
- · Such names can never be resolved


- Described in RFC1536, and later in Pappas2004 [5]
- Such names can never be resolved

- Described in RFC1536, and later in Pappas2004 [5]
- Such names can never be resolved

- Described in RFC1536, and later in Pappas2004 [5]
- Such names can never be resolved

- Described in RFC1536, and later in Pappas2004 [5]
- Such names can never be resolved

- 1. Understanding: show how TsuNAME can be weaponized (§3 and §4)
- 2. Prevention: provide tool for DNS ops (§5)
 - CycleHunter: so they can detect loops in their zones
 - identifying what's missing in RFCs
- 3. **Fixing Bugs** (§6):
 - Responsible disclosure
 - Google fixed their Public DNS
 - Cisco fixed OpenDNS

- 1. Understanding: show how TsuNAME can be weaponized (§3 and §4)
- 2. Prevention: provide tool for DNS ops (§5)
 - CycleHunter: so they can detect loops in their zones
 - · identifying what's missing in RFCs
- 3. **Fixing Bugs** (§6):
 - Responsible disclosure
 - Google fixed their Public DNS
 - Cisco fixed OpenDNS

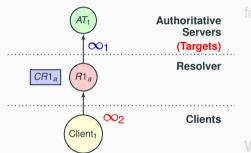
- 1. Understanding: show how TsuNAME can be weaponized (§3 and §4)
- 2. Prevention: provide tool for DNS ops (§5)
 - CycleHunter: so they can detect loops in their zones
 - · identifying what's missing in RFCs
- 3. Fixing Bugs (§6):
 - Responsible disclosure
 - Google fixed their Public DNS
 - Cisco fixed OpenDNS 😀

The Real Threat: weaponization

- + 2 domains in .nz \rightarrow 50% total traffic surge
- The threat:
 - Adversary holds many domains
 - Reconfigure to create loops of NS records
 - Trigger recursive resolvers from a botnet

This got us very **concerned**.

• How many anycast providers/TLDs can withstand that?


The Real Threat: weaponization

- + 2 domains in .nz \rightarrow 50% total traffic surge
- The threat:
 - Adversary holds many domains
 - Reconfigure to create loops of NS records
 - Trigger recursive resolvers from a botnet

This got us very **concerned**.

• How many anycast providers/TLDs can withstand that?

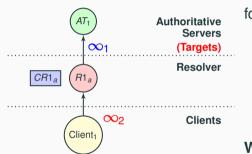
TsuNAME in practice: Root Causes

A client sends a query to the recursive. We found three cases:

- 1. Resolvers that loop indefinitely (∞_1)
- 2. Clients that loop indefinitely (∞_2)
- 3. Both

We will see solutions later

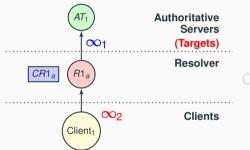
TsuNAME in practice: Root Causes



A client sends a query to the recursive. We found three cases:

- 1. Resolvers that loop indefinitely (∞_1)
- 2. Clients that loop indefinitely (∞_2)
- 3. Both

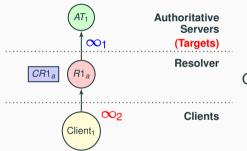
We will see solutions later


TsuNAME in practice: Root Causes

A client sends a query to the recursive. We found three cases:

- 1. Resolvers that loop indefinitely (∞_1)
- 2. Clients that loop indefinitely (∞_2)
- 3. Both

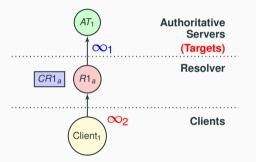
We will see solutions later



1. RFC1034 [3] is very vague

 "resolvers should bound the amount of work" to avoid infinite loops

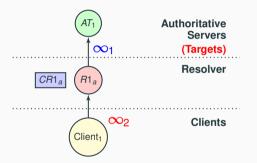
Offers no protection from looping clients (∞_2)


amplification is proportional to client query rate

- 1. RFC1034 [3] is very vague
 - "resolvers should bound the amount of work" to avoid infinite loops

Offers no protection from looping clients (∞_2)

amplification is proportional to client query rate

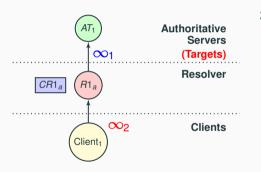


2. RFC1035 [4] (§7.2) set counters:

 "the resolver should have a global per-request counter to limit work on a single request."

Still no protection from looping clients (∞_2)

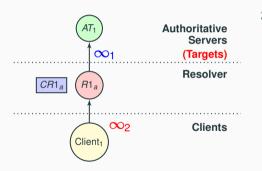
• amplification is proportional to client query rate



2. RFC1035 [4] (§7.2) set counters:

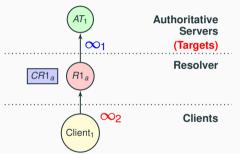
 "the resolver should have a global per-request counter to limit work on a single request."

Still no protection from looping clients (∞_2)

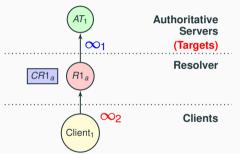

 amplification is proportional to client query rate

- 3. RFC1536 [2](§2) warns that **loops can** occur :
 - "a set of servers might form a loop wherein A refers to B and B refers to A"
 - · Offers no new solution

Still no protection from looping clients (∞_2)


amplification is proportional to client
 query rate

- 3. RFC1536 [2](§2) warns that **loops can** occur :
 - "a set of servers might form a loop wherein A refers to B and B refers to A"
 - Offers no new solution


Still no protection from looping clients (∞_2)

 amplification is proportional to client query rate

Solution: detect loops and don't repeat them (**negative caching**)

- Not in any RFC at the moment.
- Resolvers **MUST** cache these looping records
- That minimizes $\infty 1$ and prevents ∞_2
- draft-moura-dnsop-negative-cache-loop

Solution: detect loops and don't repeat them (**negative caching**)

- Not in any RFC at the moment.
- Resolvers **MUST** cache these looping records
- That minimizes $\infty 1$ and prevents ∞_2
- draft-moura-dnsop-negative-cache-loop

Reproducing TsuNAME: a controlled experiment

- · We run our authoritative servers
- Each Atlas probe sends 1 query
 - · to each local resolver
- **Goal**: determine if we can trigger loops with 1 query only
- We collect traffic and analyze it

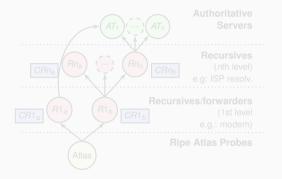
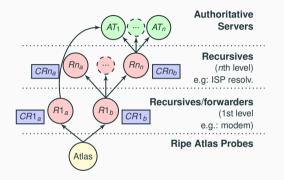
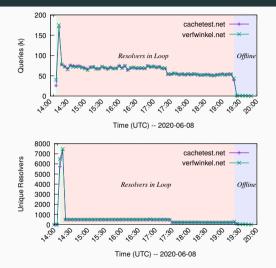
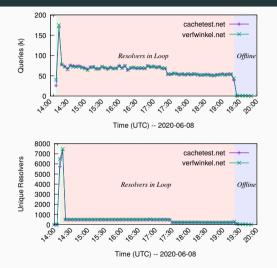



Figure 1: Ripe Atlas, Resolvers, and Auth. Servers

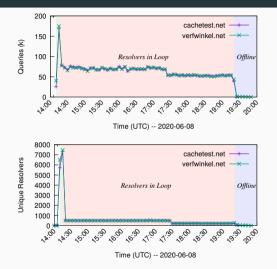

Reproducing TsuNAME: a controlled experiment

- · We run our authoritative servers
- Each Atlas probe sends 1 query
 - · to each local resolver
- **Goal**: determine if we can trigger loops with 1 query only
- · We collect traffic and analyze it


Figure 1: Ripe Atlas, Resolvers, and Auth. Servers

Reproducing TsuNAME: results

- 574 recursives looped (34 ASes)
 - Including Google Public DNS and Cisco Open DNS
- It lasted for hours
- (we had to stop the experiment)
- Paper: more complex scenarios
 - Using non-Atlas vantage points


Reproducing TsuNAME: results

- 574 recursives looped (34 ASes)
 - Including Google Public DNS and Cisco Open DNS
- It lasted for hours
- (we had to stop the experiment)
- Paper: more complex scenarios

Using non-Atlas vantage points

Reproducing TsuNAME: results

- 574 recursives looped (34 ASes)
 - Including Google Public DNS and Cisco Open DNS
- It lasted for hours
- (we had to stop the experiment)
- Paper: more complex scenarios
 - · Using non-Atlas vantage points

- 1. Understanding: show how TsuNAME can be weaponized (§3 and §4)
- 2. Prevention: provide tool for DNS ops (§5)
 - CycleHunter: so they can detect loops in their zones
 - · identifying what's missing in RFCs
- 3. Fixing Bugs (§6):
 - Responsible disclosure
 - Google fixed their Public DNS
 - Cisco fixed OpenDNS 😀

Prevention: DNS Ops can use CycleHunter

To protect Authoritative Servers OPs

• https://github.com/SIDN/ CycleHunter

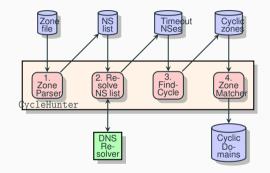


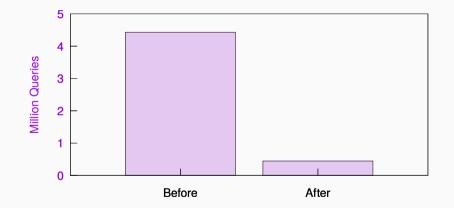
Figure 2: CycleHunter workflow

CycleHunter in the wild: not many cyclic domains

zone	Size	NSSet	Cyclic	Affec.	Date
.com	151445463	2199652	21	1233	2020-12-05
.net	13444518	708837	6	17	2020-12-10
.org	10797217	540819	13	121	2020-12-10
.nl	6072961	79619	4	64	2020-12-03
.se	1655434	27540	0	0	2020-12-10
.nz	718254	35738	0	0	2021-01-11
.nu	274018	10519	0	0	2020-12-10
Root	1506	115	0	0	2020-12-04
Total	184409371	3602839	44	1435	

Table 1: CycleHunter: evaluated DNS Zones

• Human error plays a role


- 1. Understanding: show how TsuNAME can be weaponized (§3 and §4)
- 2. Prevention: provide tool for DNS ops (§5)
 - CycleHunter: so they can detect loops in their zones
 - · identifying what's missing in RFCs
- 3. Fixing Bugs (§6):
 - Responsible disclosure
 - Google fixed their Public DNS
 - Cisco fixed OpenDNS

Responsible Disclosure

Date	Туре	Group
2020-12-10	Private Disclosure	Google Notification
2020-12-10	Private Disclosure	SIDN DNSOPs
2021-02-05	Private Disclosure	OARC34
2021-02-22	Private Disclosure	APTLD
2021-02-22	Private Disclosure	NCSC-NL
2021-02-23	Private Disclosure	CENTR
2021-03-04	Private Disclosure	LACTLD
2021-02-18-2021-05-05	Private Disclosure	Private
2021-05-06	Public Disclosure	OARC35
2021-05-06	Public Disclosure	https://tsuname.io

Table 2: TsuNAME disclosure timeline

We confirmed Google fixed its Public DNS

Post-disclosure: A European ccTLD saw it too

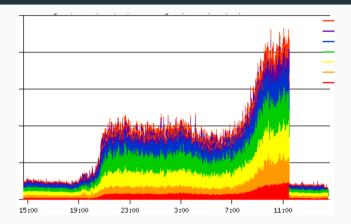


Figure 3: TsuNAME event at an EU-based ccTLD operator. 10x traffic growth

- 1. Understanding: show how TsuNAME can be weaponized (§3 and §4)
- 2. Prevention: provide tool for DNS ops (§5)
 - CycleHunter: so they can detect loops in their zones
 - · identifying what's missing in RFCs
- 3. Fixing Bugs (§6):
 - Responsible disclosure
 - Google fixed their Public DNS
 Cisco fixed OpenDNS

Conclusions

- NS loops are an old problem for DNS
 - we show we **MUST** address it now
- · Current standards do not fully address it
 - draft-moura-dnsop-negative-cache-loop
- What do to?
 - DNS operators: run CycleHunter
 - Developers of DNS resolver: negative caching of loops

https://tsuname.io

References i

[1] ANTONAKAKIS, M., APRIL, T., BAILEY, M., BERNHARD, M., BURSZTEIN, E., COCHRAN, J., DURUMERIC, Z., HALDERMAN, J. A., INVERNIZZI, L., KALLITSIS, M., KUMAR, D., LEVER, C., MA, Z., MASON, J., MENSCHER, D., SEAMAN, C., SULLIVAN, N., THOMAS, K., AND ZHOU, Y.

Understanding the Mirai botnet.

In *Proceedings of the 26th USENIX Security Symposium* (Vancouver, BC, Canada, Aug. 2017), USENIX, pp. 1093–1110.

[2] KUMAR, A., POSTEL, J., NEUMAN, C., DANZIG, P., AND MILLER, S. Common DNS Implementation Errors and Suggested Fixes. RFC 1536, IETF, Oct. 1993. [3] MOCKAPETRIS, P.

Domain names - concepts and facilities.

RFC 1034, IETF, Nov. 1987.

[4] MOCKAPETRIS, P.

Domain names - implementation and specification. RFC 1035, IETF, Nov. 1987.

[5] PAPPAS, V., XU, Z., LU, S., MASSEY, D., TERZIS, A., AND ZHANG, L.
 Impact of configuration errors on DNS robustness.
 SIGCOMM Comput. Commun. Rev. 34, 4 (Aug. 2004), 319–330.

[6] PERLROTH, N.

Hackers used new weapons to disrupt major websites across U.S. *New York Times* (Oct. 22 2016), A1.

[7] WILLIAMS, C.

Bezos DDoS'd: Amazon Web Services' DNS systems knackered by hours-long cyber-attack.

https://www.theregister.co.uk/2019/10/22/aws_dns_ddos/, 10
2019.