
Verifiable Distributed 

Aggregation Functions

draft-patton-cfrg-vdaf
IETF 112

November 2021

1



2

Protocol

Crypto

TLS
[RFC8446]

DH, Signature, Hash
[RFC7748] [RFC8032]

MLS
[draft-ietf-mls-protocol]

HPKE
[draft-ietf-cfrg-hpke]

PPM
[draft-gpew-priv-ppm]

VDAF
[draft-patton-cfrg-vdaf]



3

PPM
[draft-gpew-priv-ppm]

VDAF
[draft-patton-cfrg-vdaf]

API

Instantiations:

prio3 - Aggregate statistics
hits - Most common strings



What does a VDAF do?

VDAggregationF - Compute a statistic over batch of measurements without 
revealing anything about the individual measurements

VDistributedAF - The privacy of individual measurements is assured by spreading 
the computation over non-colluding servers (“aggregators”)

VerifiableDAF - The aggregators can check the correctness of client’s inputs to 
prevent malicious or misconfigured clients from corrupting aggregates

4



CollectorClient

5



CollectorClient

6

...

Aggregator

Aggregator

Shard Prepare Aggregate Unshard

Aggregator



CollectorClient

7

measurement aggregate_result

...

Aggregator

input_share output_share aggregate_share

Aggregator

input_share output_share aggregate_share

Aggregator

input_share output_share aggregate_share

Shard Prepare Aggregate Unshard



API

Setup vdaf_setup()

Shard Client measurement_to_input_shares(public_param, input)

Prepare Aggregator PrepState(verify_param, agg_param, nonce, input_share)

PrepState.next(inbound: Vec[Bytes])

AggregateAggregator output_to_aggregate_shares(agg_param, output_shares)

Unshard Collector aggregate_shares_to_result(agg_param, agg_shares)

8

PPM’s job is to get the right data to the 

right places at the right times!



Constructions of VDAFs

● prio3 [CBG17, BBCG+19]
○ Encode each measurement m as vector x of elements of a finite field
○ Aggregation parameter: number of measurements n
○ Any aggregation function of the form f(n, x[1] + … + x[n])
○ Any number of aggregators
○ Dist-Prepare: C(x)=0 for arithmetic circuit C that defines validity

● hits [BBCG+21]
○ Measurement: N-bit string (encoded as IDPF shares)
○ Aggregation parameter: sequence of P-bit strings (the "candidate prefixes") where P <= N
○ Aggregation function: how many inputs are prefixed by each candidate
○ Two aggregators
○ Dist-Prepare: input is prefixed by at most one candidate

● … and many more!
9



Implementations (so far)

● Rust github.com/abetterinternet/libprio-rs
○ prio3
○ hits (proof-of-concept only, missing efficient IDPF)
○ "Prio v2" (used in ENPA)

● C++ github.com/google/distributed_point_functions
○ IPDF

● C++ github.com/google/libprio-cc
○ "Prio v2" (used in ENPA)

● C github.com/mozilla/libprio
○ "Prio v1" (used in Origin Telemetry)

prio3 client perf (two aggregators)

aggregation function shard time communication

count 8 μs 208 bytes

histogram (10 buckets) 15 μs 432 bytes

sum (32 bit integers) 35 μs 960 bytes

10

https://github.com/abetterinternet/libprio-rs
https://github.com/google/distributed_point_functions
https://github.com/google/libprio-cc
https://github.com/mozilla/libprio


Fin

11



References

● [CGB17] Corrigan-Gibbs-Boneh. "Prio: Private, Robust, and Scalable 
Computation of Aggregate Statistics". NSDI 2017.

● [BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via 
Fully Linear PCPs". CRYPTO 2019.

● [BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters". 
IEEE S&P 2021.

12


