PPM for ads measurement on the web

IETF 112
csharrison@google.com
Problem: web privacy

- Third party cookies are bad for users’ cross site privacy
- But, critical infrastructure that powers online ads depends on them
- Could we build a third party cookie alternative that gives good user privacy while still supporting ads use-cases?
 - In principle, many ads use-cases are totally fine with aggregate data!
Attribution Measurement: with cookies

- A third party cookie allows joining events from two sites
 - An impression (on a publisher site)
 - A conversion (on an advertiser site)
- This allows building a graph of user browsing activity.
- The cookie becomes a sort of mega-identity that allows your activity to be seen wherever the cookie is read

![Diagram of Ad-tech and cookies connecting news.example and shoes.example](image-url)
Attribution Measurement: with PPM

- Browser internally joins two events, and generates contributions to some aggregate measure (e.g. a histogram)
 - x-axis: ad campaign
 - y-axis: number of conversions
- Browser splits contributions into shares, and submits them to the PPM system
- PPM securely aggregates and shares with ad-tech
More use-cases to consider

- Guaranteeing differential privacy on PPM output
- Reporting under very large, sparse, domains
- Training machine learning models
 - e.g. compute pConversion given an impression
- Supporting infrastructure for ads targeting use-cases
 - e.g. github.com/WICG/turtledove
 - k-anonymity checks, ad serving measurement, etc.
- Reach measurement (how many users saw my ads?)
- Generic cross site measurement on the web
Formal privacy guarantees: Differential privacy

Take two neighboring databases d and d' that differ on a single user’s contributions. Run the two databases through a randomized algorithm M.

M is ϵ differentially private if: $P(M(d) = O) \leq e^{\epsilon} P(M(d') = O)$ For all possible outputs O.

In other words, the output of M looks “basically the same” whether that single user is in the database or not, via noise introduced by M.

PPM can guarantee that output is differentially private, even if one party is dishonest.
- Each aggregator can add independent noise
- Clients can add noise