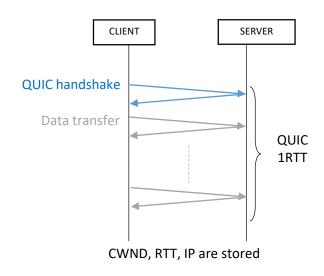
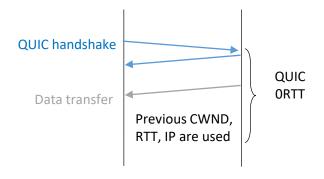
# Updates to 0-RTT-BDP

N. Kuhn - CNES

E. Stephan - Orange

G. Fairhurst - University of Aberdeen


T. Jones - University of Aberdeen


C. Huitema - Private Octopus Inc.

### ORTTBDP

#### Core idea

- 1. During a previous session, current RTT (current\_rtt), CWND (current\_cwnd) and client's current IP (current\_client\_ip) are stored as saved\_rtt, saved\_cwnd and saved\_client\_ip;
- 2. When resuming a session, the server might set the current\_rtt and the current\_cwnd to the saved\_rtt and saved\_cwnd of a previous connection.





# Rationale behind the safety guidelines

Previously measured saved\_rtt and saved\_cwnd should not be used as-is to avoid potential congestion collapse:

 Rationale #1: An Internet method needs to be robust to network conditions that can differ between sessions.

 Rationale #2: Information sent by a malicious client would not be relevant since it might try to convince servers to use a CWND higher than required. This could increase congestion.

### Solutions and associated trade-offs

| Rationale             | Solution                      | Advantage                                                                                               | Drawback                                                                                                                    |
|-----------------------|-------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| #1 : Variable network | #1 : set_current_* to saved_* | Ingress optimization                                                                                    | Risks of adding congestion                                                                                                  |
|                       | #2 : implement safety check   | Reduce risks of adding congestion                                                                       | Negative impact on ingress optimization                                                                                     |
| #2 : Malicious client | #1: Local storage             | Enforced security                                                                                       | Client can not decide to reject Malicious server coulf fill client's buffer Limited use-cases                               |
|                       | #2 : NEW_TOKEN                | Save resource at server Opaque token protected                                                          | Malicious client may change token even if protected Malicious server could fill client's buffer Server may not trust client |
|                       | #3 : BDP extension            | Extended use-cases Save resource at server Client can read and decide to reject BDP extension protected | Malicious client may change BDP even it protected Server may not trust client                                               |

# Implementation recommendations

[RFC9000]: "Generally, implementations are advised to be cautious when using previous values on a new path."

#### This draft:

- proposes a discussion on how using previous values can be achieved in a interoperable manner
- how it can be done safely
- Integrates some implementation recommendations for BBR, NewReno and CUBIC.

### Comment on no\_save\_metrics

If the server does not want to store the metrics from previous connections:

- Is an equivalent of the tcp\_no\_metrics\_save for QUIC necessary?
- Does this need to be negociable for a client to refuse the exploitation of previous sessions parameters?

### Performances

- Deployment results of the ORTTBDP on satellite systems at IETF111
- https://datatracker.ietf.org/meeting/111/materials/slides-111-maprg-feedback-from-using-quics-0-rtt-bdp-extension-over-satcom-public-access-00.pdf
  - 0-RTT vs 1-RTT
    - up to 33% gain for 500 kB
    - up to 45 % gain for 1 MB
  - 0-RTT-BDP vs 1-RTT
    - up to 67% gain for 500 kB
    - up to 62% gain for 1 MB
- On-going results published soon: assessing fairness impact

### Next steps

#### **Status**

draft-kuhn-quic-Ortt-bdp includes 3 methods

- 2 methods are implemented in picoquic
  - BDP frame <a href="https://github.com/private-octopus/picoquic/pull/1209">https://github.com/private-octopus/picoquic/pull/1209</a>
  - local storage of CWND, RTT parameters <a href="https://github.com/private-octopus/picoquic/pull/1204">https://github.com/private-octopus/picoquic/pull/1204</a>

#### Next

- Looking for other implementers
- Integration in QUIC interop matrix