SCReAM (RFC8298) experiments and future

IETF112 - RMCAT

Ingemar Johansson
Ericsson AB
ingemar.s.johansson@ericsson.com
Where SCReAM is (or isn’t) used

- WebRTC – was implemented for OpenWebRTC but never got traction
 → Never picked up for WebRTC

- Cloud rendered gaming experiments

- Remote driving

- 5G benchmark activities
Cloud rendered gaming

- Game is rendered in (edge) cloud
- Video is encoded and streamed to terminal
- SCReAM Gstreamer plugin from https://github.com/EricssonResearch/scream/tree/master/gstscream

Ericsson and DT demo 5G low latency feature
Remote driving

Traxxas 1:10 RC-Car
NVIDIA Jetson Nano
Two cameras
Front camera prioritized
Max 40Mbps
Benchmarking SCReAM BW Test tool

- A network performance test tool that emulates a video coder
 - Fixed rate or...
 - Rate adaptive: Adjusts bitrate to available network throughput, working range 10kbps-500+Mbps
 - I frames and variable frame sizes can be modeled
- Measures: RTT, estimated queue delay, throughput, packet loss, CE marks....
- Source code: https://github.com/EricssonResearch/scream
Findings

- Window based CC is probably good!
 - Radio resource configuration, handover can cause pauses in transmission
 - RTP packets put on hold in sender → can be discarded → Force IDR can be triggered already on sender side → faster recovery

- Feedback rate (~ 1 per 16 RTP packets) is probably overkill
 - But .. more focus on having stable streaming than optimizing ACK overhead

- Video coder matters (80+ %) of the development work!
 - Rate control is not always optimal
 - Video encoder rate control can become confused by frequent updates
 - Sluggish rate control loop can be an issue
 - I-frames are problematic in congested situations
 - Transmit I-frames with care
 - Gradual Decoder Refresh (GDR)
 - Compress I-frames harder

Diagram:

- **Video codec**
 - Rate control
 - Queue length
 - Queue RTP packets

- **Network congestion control**
 - Rate adjustment
 - CWND, RTT
 - bytesInFlight
 - List of TX RTP {SSRC, RTP_SN, TS_TX}

- **Transmission scheduler**
 - RTP
 - RTCP
 - {List of recv SSRC, TS_RX}
 - UDP socket

Notes:

- **Queue:** RTP packets
- **Rate control:** Adjusts based on network congestion
- **Network congestion control:** Keeps track of TX RTP status
Future

- L4S in running code but not in RFC8298 → future RFC8298bis
- Possibly improved L4S implementation
Questions/Comments?

65.5268037536038N, 22.79877262159975E