Updates of APN Framework & Gap Analysis

<u>https://datatracker.ietf.org/doc/html/draft-li-apn-framework-04</u> <u>https://datatracker.ietf.org/doc/html/draft-peng-apn-scope-gap-analysis-03</u>

> Gyan Mishra/Shuping Peng on behalf of all the co-authors

1

APN Framework Updates

- In order to better clarify what APN can enable with the introduced APN attribute compared to the existing network without APN, we illustrate how APN works through an example use case
 A typical network service being provisioned nowadays, i.e. the Cloud Leased Line service.
- In order to make the tunnel description much easier to understand, we use the recent technology in IETF, i.e. SRv6.

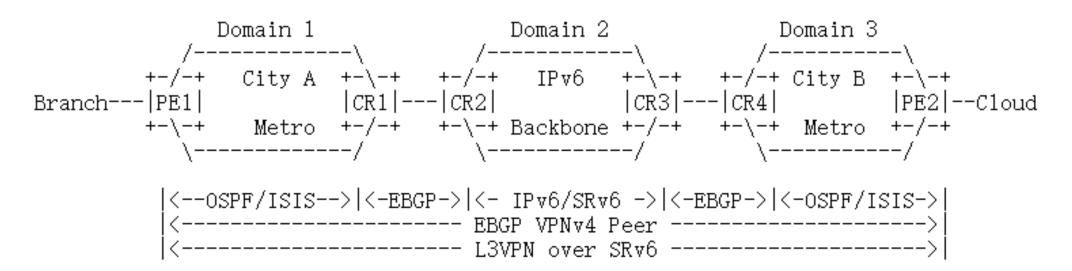


Figure 2. Reference diagram for the example use case illustration

Example use case

• User Group and Application Group Design

- Derive the User Group and User Group at APN Edge
- Access Right Check at the edge of the backbone network
- SLA Guarantee in the backbone network
 - Network Measurement
 - Traffic Steering

	IPv6 Address	Port Number
Enterprise A/Office Audio Applications	2001:DB8:A1:A1::/64	1718, 1719
Enterprise A/Office Video Applications	2001:DB8:A1:A1::/64	5060, 5061
Enterprise A/Office Data Applications	2001:DB8:A1:A1::/64	21, 80
Enterprise A/R&D Audio Applications	2001:DB8:A1:A2::/64	1718, 1719
Enterprise A/R&D Video Applications	2001:DB8:A1:A2::/64	5060, 5061
Enterprise A/R&D Data Applications	2001:DB8:A1:A2::/64	21, 80
Enterprise A/IT Audio Applications	2001:DB8:A1:A3::/64	1718, 1719
Enterprise A/IT Video Applications	2001:DB8:A1:A3::/64	5060, 5061
Enterprise A/IT Data Applications	2001:DB8:A1:A3::/64	21, 80

Match:				
VPN1				
Source Address 2001:DB8:A:11::/56				
Action				
Set user-group 001001001				
Match:				
VPN1				
destination Address 2001:DB8:A1:A1::/64				
destination port 1718,1719				
Action				
Set app-group 101001001				
NOC APP ALVAP ICICCIUCI				

Example use case cont.

- User Group and Application Group Design
- Derive the User Group and User Group at APN Edge
- Access Right Check at the edge of the backbone network
- SLA Guarantee in the backbone network
 - Network Measurement
 - Traffic Steering

```
Match:
    user-group 001001001
    app-group 101002001, 101002002, 101002003, 101003001, 101003002, 101003003
Action
    Deny
Match:
    user-group 001001001
    app-group 101001001, 101001002, 101001003
Action
    Permit
```

Example use case cont..

- User Group and Application Group Design
- Derive the User Group and User Group at APN Edge
- Access Right Check at the edge of the backbone network
- SLA Guarantee in the backbone network
 - Network Measurement
 - Traffic Steering

Match: User-group 001001004 application group 101001002 User-group 001002004 application group 101002002 User-group 001003004 application group 101003002 Action Apply IOAM Match: User-group 001001004 application group 101001002 User-group 001002004 application group 101002002 User-group 001003004 application group 101003002 Action Redirect SRv6 Policy 1

Gap Analysis Updates – added more existing IDs

Detnet Flow Identification

- The Detnet IP Flow ID is logical and there is no such Flow ID carried for Detnet, but only the 6-tuple is directly used to identify the Detnet flows.
- Only one exceptional case, the 32-bit flow identification (FID) identifies one specific Detnet flow of redundancy protection.

Network Slicing Resource ID

• The ID is used to indicate the network resources to be allocated to the network slices and it is not bound to any traffic flow.

Service Function Path ID

• Service Path Identifier (SPI) uniquely identifies a Service Function Path (SFP), and it is not bound to any traffic flow.

Gap Analysis Updates – added the comparison summary table

+-					
	ID	Identification Object	Source	Conf. node Size	
APN	APN ID	fine-granular services	Layer 2	Controller 32bits	
iOAM	Flow ID	The flow that needs performance monitoring	-	Controller 32bits Ingress	
Detnet	Flow ID (6-tup1e)	The flow that needs Detnet services	-	Controller -	
Detnet	1	The redundant protection flow	_	Detnet 32bits Controller	
NS	Resource ID	The network resources that are allocated to network slices	-	Controller 32bits	
SFC	SPI	The SF Path	_	Controller 24bits	
	Performance Policy ID	The performance policy	-	+-+-+-+-+-+-+-+-+-+ Controller -	
+-+-+-	-+-+-+-+-+-	·+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	-+-+-+-+	+-+-+-+-+-+-+-+-+	

Table 1. Comparison of the Identifiers

Thank you!