
Cryptography in a Post-Quantum World

Dustin Moody

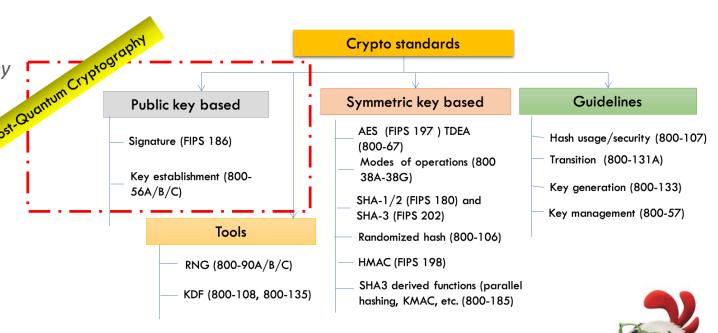
National Institute of Standards and Technology U.S. Department of Commerce Crypto Technology Group Computer Security Division Information Technology Lab

Quantum Computers

- Exploit quantum mechanics to process information
- "Qubits" instead of bits
- Potential to vastly increase computational power beyond classical computing limit
- Limitations:
 - When a measurement is made on quantum system, superposition collapses
 - Only good at certain problems
 - Quantum states are very fragile and must be extremely well isolated

Google's 72-qubit chip "Bristlecone"

The Quantum Threat

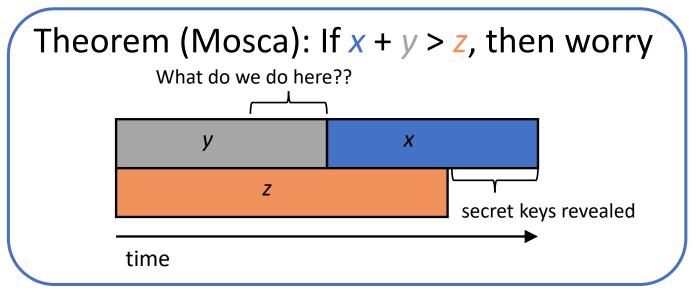


• NIST public-key crypto standards

- **SP 800-56A:** Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography
- **SP 800-56B**: Recommendation for Pair-Wise Key-Establishment Using Integer Factorization Cryptography
- FIPS 186: The Digital Signature Standard

vulnerable to attacks from a (large-scale) quantum computer

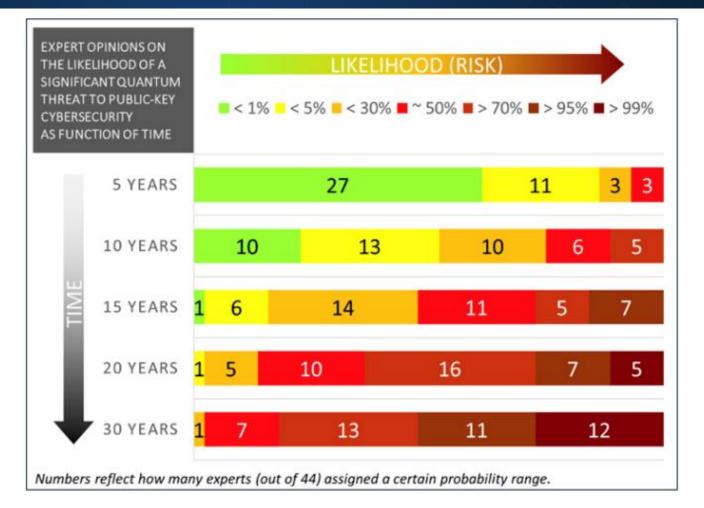
- Shor's algorithm would break RSA, ECDSA, (EC)DH, DSA
- Symmetric-key crypto standards would also be affected, but less dramatically



Post-Quantum Cryptography

• Post-Quantum Cryptography (PQC)

- Cryptosystems which run on classical computers, and are believed to be resistant to attacks from both classical and quantum computers
- How soon do we need to worry?



x – time of maintaining data security

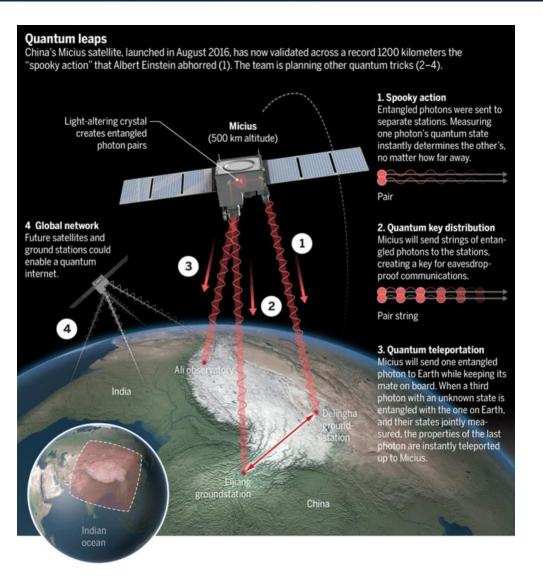
y – time for PQC standardization and adoption

z – time for quantum computer to be developed

When will a Quantum Computer be Built? NST

Source: M. Mosca, M. Piani, Quantum Threat Timeline Report, 2020 available at: <u>https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/</u>

Quantum Cryptography aka QKD


Using quantum technology to build cryptosystems

• Theoretically unconditional security guaranteed by the laws of physics

Limitations

- Can do encryption, but not authentication
- Quantum networks not very scalable
- Expensive and needs special hardware

Lots of money being spent on "quantum" This is <u>NOT</u> our focus

NIST PQC Milestones and Timelines

2016

Determined criteria and requirements, published NISTIR 8105

Announced call for proposals

2017

Received 82 submissions Announced 69 1st round candidates

2018

Held the 1st NIST PQC standardization Conference

2019

Announced 26 2nd round candidates, <u>NISTIR 8240</u>

Held the 2nd NIST PQC Standardization Conference

2020

Announced 3rd round 7 finalists and 8 alternate candidates. NISTIR 8309

2021

Hold the 3rd NIST PQC Standardization Conference

2022-2023

Release draft standards and call for public comments

Evaluation Criteria

Security – against both classical and quantum attacks

Level	Security Description					
I	At least as hard to break as AES128 (exhaustive key search)					
П	At least as hard to break as SHA256 (collision search)					
Ш	At least as hard to break as AES192 (exhaustive key search)					
IV	At least as hard to break as SHA384 (collision search)					
V	At least as hard to break as AES256 (exhaustive key search)					

NIST asked submitters to focus on levels 1,2, and 3. (Levels 4 and 5 are for very high security)

Performance – measured on various classical platforms

Other properties: Drop-in replacements, Perfect forward secrecy, Resistance to sidechannel attacks, Simplicity and flexibility, Misuse resistance, etc.

A Worldwide Effort

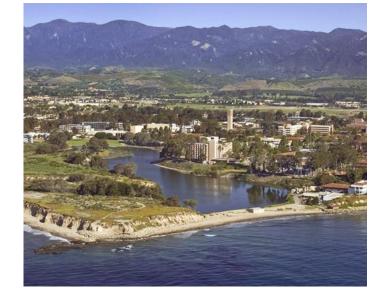
25 Countries

16 States

6 Continents

The 1st Round

- A lot of schemes quickly attacked!
- Many similar schemes (esp. lattice KEMs)
- 1st NIST PQC Standardization workshop
- Over 300 "official comments" and 900 posts on the pqc-forum
- Research and performance numbers
- After a year: 26 schemes move on



	Signatures	KEM/Encryption	Overall
Lattice-based	5	21	26
Code-based	2	17	19
Multi-variate	7	2	9
Stateless Hash or Symmetric based	3		3
Other	2	5	7
Total	19	45	64

The 2nd Round

- 4 merged submissions
- Maintained diversity of algorithms
- Cryptanalysis continues LAC, LEDAcrypt, RQC, Rollo, MQDSS, qTESLA, LUOV all broken
- 2nd NIST PQC Standardization workshop
- More benchmarking and real world experiments
- After 18 months: 15 submissions move on

	Signatures	KEM/Encryption	Overall
Lattice-based	3	9	12
Code-based		7	7
Multi-variate	4		4
Stateless Hash or Symmetric based	2		2
Isogeny		1	1
Total	10	16	26

Biting the Bullet

Encryption/H	<u>(EMs</u>		
Crystals-			
Kyber	Lattice	MLWE	
Saber	Lattice	MLWR	
FrodoKEM	Lattice	LWE	
Round 5	Lattice	LWR/RLWR	
LAC	Lattice	RLWE	
NewHope	Lattice	RLWE	
Three Bears	Lattice	IMLWE	
NTRU	Lattice	NTRU	
NTRUprime	Lattice	NTRU	
SIKE	Isogeny	Isogeny	
Classic			
McEliece	Codes	Goppa	
NTS-KEM	Codes	Goppa	
		short Hamming	
BIKE	Codes	short Hamming	
	Codes Codes	short Hamming short Hamming	
HQC	Codes		
HQC		short Hamming	
BIKE HQC LEDAcrypt ROLLO	Codes	short Hamming short	

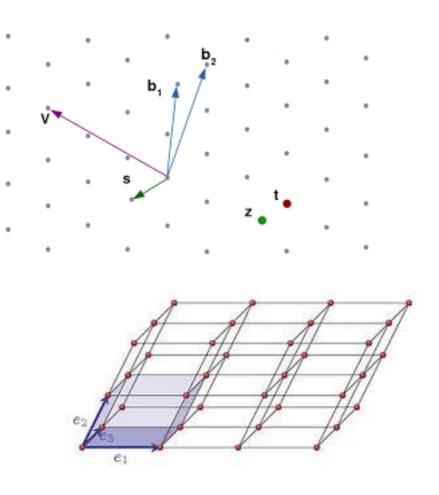
Encryption/	Encryption/KEMs		
Crystals-			
Kyber	Lattice	MLWE	
Saber	Lattice	MLWR	
NTRU	Lattice	NTRU	
FrodoKEM	Lattice	LWE	
NTRUprime	Lattice	NTRU	
SIKE	Isogeny	Isogeny	
Classic			
McEliece	Codes	Goppa	
BIKE	Codes	short Hamming	
HQC	Codes	short Hamming	

Signatures			
CRYSTALS-			
Dilithium	Lattice	Fiat-Shamir	
qTesla	Lattice	Fiat-Shamir	
Falcon	Lattice	Hash then sign	
SPHINCS+	Symm	Hash	
Picnic	Symm	ZKP	
LUOV	MultVar	UOV	
Rainbow	MultVar	UOV	
GeMMS	MultVar	HFEv-	
	MultVar	Fiat-Shamir	

Signatures		
CRYSTALS-		
Dilithium	L	Fiat-Shamir
Falcon	Lattice	Hash then sig
SPHINCS+	Symm	Hash
Picnic	Symm	ZKP
Rainbow	MultVar	UOV
GeMMS	MultVar	HFEV-

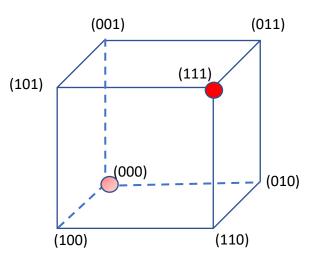
The 3rd Round Finalists and Alternates

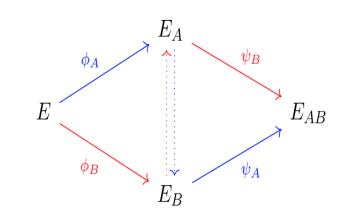
• NIST selected 7 Finalists and 8 Alternates


- Finalists: most promising algorithms we expect to be ready for standardization at end of 3rd round
- Alternates: candidates for potential standardization, most likely after another (4th) round
- KEM finalists: Kyber, NTRU, SABER, Classic McEliece
- Signature finalists: Dilithium, Falcon, Rainbow
- KEM alternates: Bike, FrodoKEM, HQC, NTRUprime, SIKE
- Signature alternates: GeMSS, Picnic, Sphincs+

	Signatures		KEM/Encryption		Overall	
Lattice-based	2		3	2	5	2
Code-based			1	2	1	2
Multi-variate	1	1			1	1
Stateless Hash or Symmetric based		2				2
Isogeny				1		1
Total	3	3	4	5	7	8

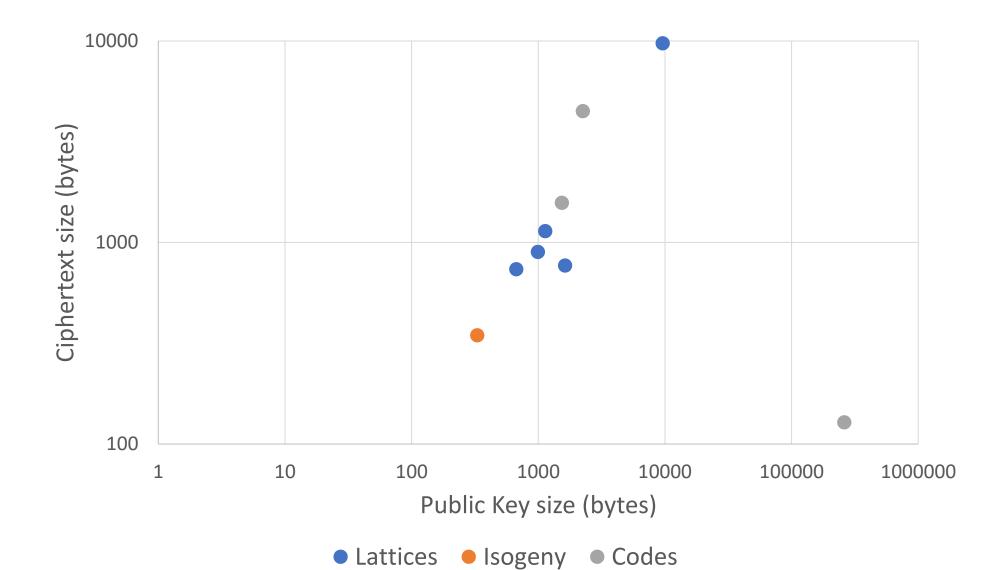
Lattice-based KEMs


- Crystals-Kyber
 - Great all-around \rightarrow Finalist
- Saber
 - Great all-around \rightarrow Finalist
- NTRU
 - Not quite as efficient, but older, IP situation \rightarrow Finalist
- NTRUprime
 - Different design choice and security model \rightarrow Alternate
- FrodoKEM
 - Conservative/Backup → Alternate

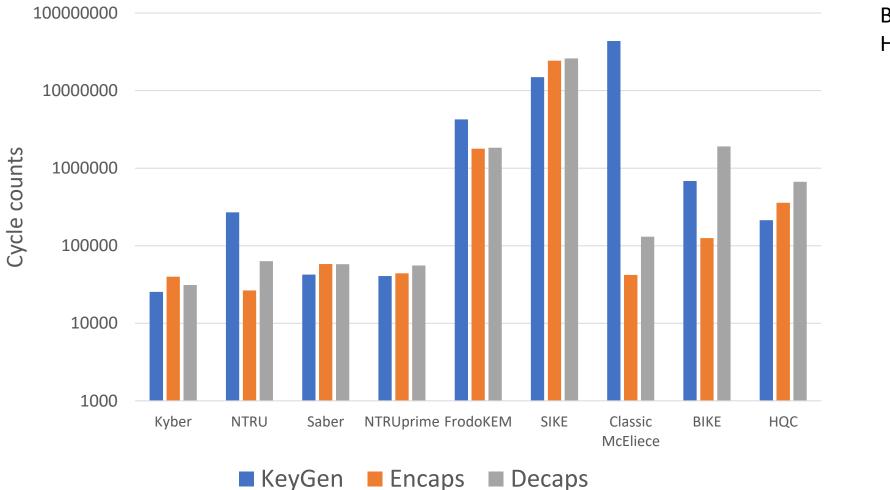


Isogeny- and Code-based KEMs

- Classic McEliece
 - Oldest submission, large public keys but small ciphertexts → Finalist
- BIKE
 - Good performance, CCA security?, more time to be stable → Alternate
- HQC
 - Better security analysis/larger keys (than BIKE) → Alternate
- SIKE
 - Newer security problem, an order slower → Alternate



KEM Key sizes (category 1)


Note: Both axes have logarithmic scale

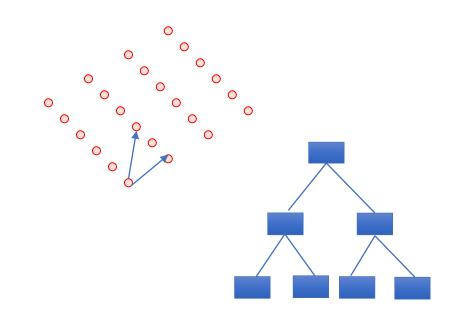
KEM Performance graph (category 1)

Note: The cycle count axis has logarithmic scale

Benchmarks on a Haswell avx2

The Signatures

• Dilithium and Falcon

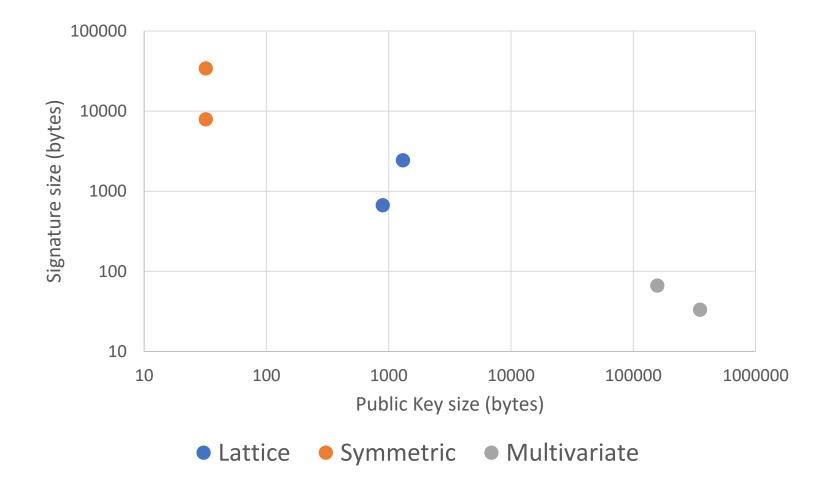

- Both balanced, efficient lattice-based signatures
- coreSVP security higher?
- \rightarrow Finalists

• SPHINCS+ and Picnic

- SPHINCS+ is stable, conservative security, larger/slower
 → Alternate
- Picnic not stable yet, but has lots of potential \rightarrow Alternate

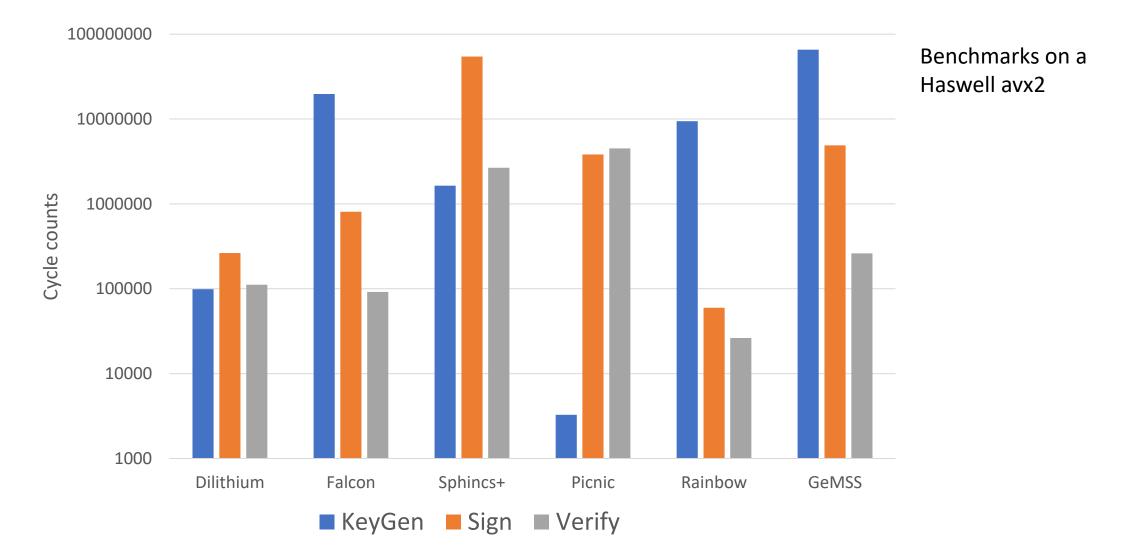
Rainbow and GeMMS

- Both have large public keys, small signatures.
 Rainbow a bit better → Finalist, GeMMS → Alternate
- 3rd round cryptanalytic results call into question the security for both



$$p^{(1)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p^{(1)}_{ij} \cdot x_i x_j + \sum_{i=1}^n p^{(1)}_i \cdot x_i + p^{(1)}_0$$
$$p^{(2)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p^{(2)}_{ij} \cdot x_i x_j + \sum_{i=1}^n p^{(2)}_i \cdot x_i + p^{(2)}_0$$
$$\vdots$$
$$p^{(m)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p^{(m)}_{ij} \cdot x_i x_j + \sum_{i=1}^n p^{(m)}_i \cdot x_i + p^{(m)}_0$$

Signature key sizes (category 1)

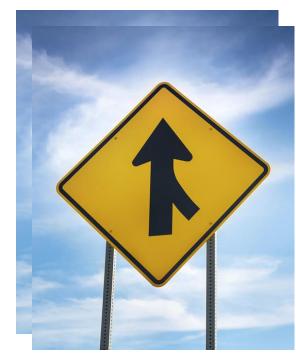


Note: Both axes have logarithmic scale

Signature Performance graph (category 1) NGT

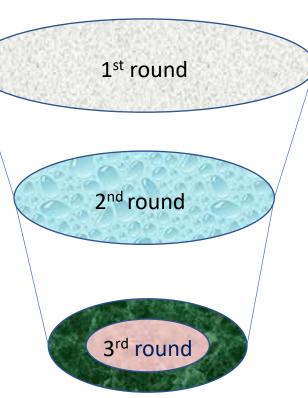
Note: The cycle count axis has logarithmic scale

Timeline


• The 3rd Round will end sometime in end of 2021/beginning of 2022

- NIST will announce which finalist algorithms it will standardize
 - Including potentially SPHINCS+
- This will include algorithms which will be able to be used by most applications
- NIST will issue a Report on the 3rd Round to explain our decisions
- NIST will also announce any candidates advancing to 4th round
 - The 4th round will similarly be 12-18 months
 - These algorithms will be for a diversified portfolio, or for applications with different performance needs
- We expect to release draft standards for public comment in 2022-2023
- The first set of standards will hopefully be finalized by 2024

An on-ramp for signatures


NIST

- At the conclusion of the 3rd Round, NIST will issue a new Call for Signatures
 - There will be a deadline for submission, likely 6 months 1 year
 - This will be much smaller in scope than main NIST PQC effort
 - The main reason for this call is to diversify our signature portfolio
 - These signatures will be on a different track than the candidates in the 4th round
- We are most interested in a general-purpose digital signature scheme which is not based on structured lattices
 - We may be interested in other signature schemes targeted for certain applications. For example, a scheme with very short signatures.
- The more mature the scheme, the better.
- NIST will decide which (if any) of the received schemes to focus attention on

How will NIST make its decisions?

- Using the evaluation criteria:
 - Security
 - Security levels offered, (confidence in) security proof, known attacks, classical/quantum complexity
 - Performance
 - Size of parameters, speed of KeyGen, Enc/Dec, Sign/Verify, decryption failures
 - Algorithm and implementation characteristics
 - IP issues, side channel resistance, simplicity and clarity of documentation
- For the lattice KEMs, the main decision will be **Kyber/NTRU/Saber**
- Similarly for lattice signatures, the main decision will be Dilithium/Falcon
- Any other algorithms selected will be their own distinct decision

Patent and IPR issues

- This is a very complicated area
- We acknowledge the impact of encumbered technology on adoption
- NIST is actively engaging to try to resolve known IPR issues on the candidates
- When we have something concrete, we will share it

Note: it may not be possible for NIST to resolve all IP concerns

- In light of the above, NIST believes the discussion should be around the impact of IP, and how we should factor these issues into our decision-making
 - NIST would very much appreciate feedback on the impact of potentially selecting algorithms which may be encumbered

Stateful hash-based signatures were proposed in 1970s

- Rely on assumptions on hash functions, that is, not on number theory complexity assumptions
- It is essentially limited-time signatures, which require state management

NIST specification on stateful hashbased signatures

• NIST SP 800-208 "Recommendation for Stateful Hash-Based Signature Schemes"

Internet Engineering Task Force (IETF) has released two RFCs on hash-based signatures

- <u>RFC 8391</u> "XMSS: eXtended Merkle Signature Scheme" (By Internet Research Task Force (IRTF))
- <u>RFC 8554</u> "Leighton-Micali Hash-Based Signatures" (By Internet Research Task Force (IRTF))

ISO/IEC JTC 1 SC27 WG2 Project on hashbased signatures

- Stateful hash-based signatures will be specified in ISO/IEC 14888 Part 4
- It is in the 1st Working Draft stage

Hybrid mode – An approach for migration

NIST SP800-56C Rev. 2 *Recommendation for Key-Derivation Methods in Key-Establishment Schemes* August 2020

"In addition to the currently approved techniques for the generation of the shared secret Z ... this Recommendation permits the use of a "hybrid" shared secret of the form Z' = Z || T, a concatenation consisting of a "standard" shared secret Z that was generated during the execution of a key-establishment scheme (as currently specified in [SP 800-56A] or [SP 800-56B]) followed by an auxiliary shared secret T that has been generated using some other method"

The above is just an illustration. The actual combination of two schemes will depend on the protocol specifications.

NIST has published transition guidelines for algorithms and key lengths

NIST SP 800-131A Revision 2 "Transitioning the Use of Cryptographic Algorithms and Key Lengths" - Examples

• Three-key Triple DES

Encryption - Deprecated through 2023 Disallowed after 2023 Decryption - Legacy use

• SHA-1

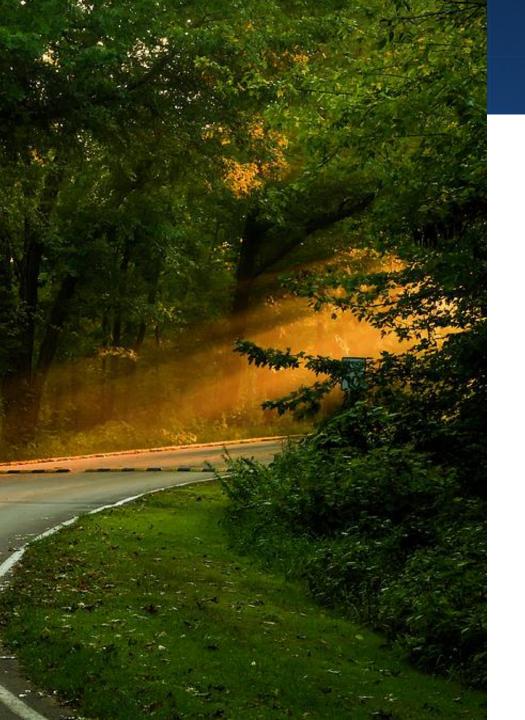
Digital signature generation - Disallowed, except where specifically allowed by NIST protocol-specific guidance Digital signature verification - Legacy use

- Digital signature vernication Legacy use
- Non-digital signature applications Acceptable
- Key establishment methods with strength < 112 bits (e.g. DH mod p, |p| < 2048)
 <p>Disallowed

NIST will provide transition guidelines to PQC standards

• The timeframe will be based on a risk assessment of quantum attacks

Getting ready for PQC


N A T I O N A L CYBERSECURITY CENTER OF EXCELLENCE

- The National Cybersecurity Center of Excellence (NCCoE) has a project for <u>Migration to PQC</u>. The goals:
 - Align and complement the NIST PQC standardization activities
 - Raise awareness and develop practices to ease the migration to PQC algorithms
 - Deliver <u>white papers</u>, playbooks, and demonstrable implementations for organizations
 - Target organizations that provide cryptographic standards and protocols and enterprises that develop, acquire, implement, and service cryptographic products
 - NCCoE hosted a workshop on <u>Considerations in Migrating to Post-Quantum</u> <u>Cryptographic Algorithms</u> in October 2020
 - If you are interested in joining the project team as a collaborator, please review the requirements identified in the <u>Federal Register Notice</u> which is based on the <u>final project description</u>.
 - Questions and comments: <u>applied-crypto-pqc@nist.gov</u>

What can organizations do now?

- Perform a quantum risk assessment within your organization
 - Identify information assets and their current crypto protection
 - Identify what 'x', 'y', and 'z' might be for you determine your quantum risk
 - Prioritize activities required to maintain awareness, and to migrate technology to quantum-safe solutions
- Evaluate vendor products with quantum safe features
 - Know which products are not quantum safe
 - Ask vendors for quantum safe features in procurement templates
- Develop an internal knowledge base amongst IT staff
- Track developments in quantum computing and quantum safe solutions, and to establish a roadmap to quantum readiness for your organization
- Act now it will be less expensive, less disruptive, and less likely to have mistakes caused by rushing and scrambling

Conclusion

• We can start to see the end?

• NIST is grateful for everybody's efforts

- Check out <u>www.nist.gov/pqcrypto</u>
 - Sign up for the pqc-forum for announcements & discussion
 - send e-mail to <u>pqc-comments@nist.gov</u>