
BGP-ASPA
Hackathon
Report
IETF 112

Hackathon Team:
O. Borchert, L. Hannachi, D. Montgomery, K. Sriram

Goal

• Develop tools and data sets to facilitate testing
emerging BGP route-leak mitigation technique

1

What tools did we use?

• We use the NIST BGP-SRx Software Suite V6 that provides
reference implementation for:

• draft-ietf-sidrops-aspa-verification-08+ (update with
algorithm correction*)
• draft-ietf-sidrops-8210bis-03
• and test harnesses that enables scripted experiments

with RPKI & BGP data sets.

• Source: https://github.com/usnistgov/NIST-BGP-SRx

* https://datatracker.ietf.org/meeting/110/materials/slides-110-sidrops-sriram-aspa-alg-accuracy-01

2

https://github.com/usnistgov/NIST-BGP-SRx

3

Validation
Cache A

Validation
Cache B

RPKI Data

Area of Interest

High Level ASPA Data Flow

Develop tools and data sets for testing router
implementations of ASPA. Unit tests and Internet scale tests

Task 1:
• Create sample Internet scale ASPA data set for use with

8210bis-03 using CAIDA reference data
• Use SRx Test harness ASCII format:

addASPA <AFI> <CustomerAS> <ProviderAS>+
Task 2:
• Create sample BGP UPDATES using data from RouteViews3.

4

Tasks

• We designed a test framework that allows to generate

• CAIDA based ASPA script data describing 72, 616 ASPA
PDU’s containing 148,284 customer provider relations.

• Data Pool is down-selectable to only use ASPA link
relations for ASN’s found within UPDATE stream only

• Specified a result output that can be used to compare
between implementations

• Created Data Sets 100, 500, 800, 1K, 10K, and 20K unique AS
PATHs using RouteViews and CAIDA Data

5

What got done

• We generated UPDATE traffic files, one for each
peer containing the UPDATE send to the collector
• We removed the Peer AS (will be added by the

player again)
• We added the marker

B4 BGPsec-IO to only
generate BGP-4
UPDATES and NOT
BGPsec UPDATES

6

1. Preparation of BGP peers from
RouteViews3 Data Set for BGPsec-IO

• To use the “rpkirtr_svr” BGP-SRx cache test harness
we needed the CAISA data in the following script
style: addASPA <afi> <customer> <provider>+
• We generated a total of

72,616 ASPA data
entries with 148,284
link relations.

7

Convert all CAIDA Data to BGP-SRx
Cache Test Harness Format

We specify the peer and the maximum UPDATES
• Here we down select the peers UPDATES to “X” UNIQUE

AS Paths and removed the prefix.
• We added a synthetic

generated prefix from
the prefix pool
0.0.1.0/24 to
255.255.255.0/24 to
assure no path uses the
same prefix.*

* Can happen if raw data comes from UPDATE stream and
not RIB in.

8

Creation of Test Traffic

The ASPA data is generated depending on the
UPDATE traffic.
• From the selected UPDATE traffic a list of all unique ASes

is generated
• From the 72K available Customer specification only

those ASes are selected that found in the UPDATE traffic.
• A downsized ASPA data file is generated

9

Creation of APSA Test Data

• Once the experimental data is generated, the
starter script allows two modes:
• Terminal Only

• In this mode each module is started in the background
• All output standard and error is redirected into log files.

• Gnome Terminal
• This mode is preferable for window based Linux systems
• Here each module will be started in its own terminal tab

• In case something goes wrong, this mode is simpler to debug.
• This mode allows to control the cache test harness

10

Starting the Experiment

11

The Gnome Terminal Mode

Each Module is started in
it’s own terminal window

…

Result output

We used RouteViews-3 BGP data, Large Scale ISP and CAIDA
data from Oct. 1, 2020

• We created a subset of unique routes.

• We selected only CAIDA data where ASN in each path is
listed as customer

• Then we performed ASPA validation

• IUT is private ASN peering with Large Scale ISP

12

The Experiment

Some Results

Results vary from peer to peer
1
3

ISP is Provider of IUT

Valid invalid unknown unverifiable

94% 3% 3% 0%

ISP is Customer of IUT

Valid invalid unknown unverifiable

14% 18% 68% 0%

• We still refine the code and then will publish it
once its ready
• Once published we will provide the location of the

framework on the list
• Also we will provide a link in out GitHub page for

NIST BGP-SRx V6:

14

The Code

• More experiments to study gradual deployment of ASPA objects
• Selecting different peers

• For proper performance testing extending framework to use
multiple peering sessions

• Manual possible but it would be nice to have it automated as
well

• Scaling, scaling, scaling,….
• Other implementations to test against

• Maybe next hackathon
• Create ASPA objects for testing Validation Caches?

• Maybe others can join in!

15

Future Work / Hackathons

Oliver Borchert
oliver.borchert@nist.gov

General Questions:
itrg-contact@list.nist.gov

16

Questions ?

