Applying Segment Routing concepts to Services

• Services Segment Routing Global Block – Service SRGB

 • Range of labels reserved for Services Global Segments.
 • A service-SID is advertised as a domain-wide unique index.
 • The Service-SID index points to a unique label within the SRGB.
 • E.g., Elan Service 65 will have a Service-SID index 65 on all routers configured with that Service.
PW History

• Historically, a Pseudo-Wire (PW) is a P2P service between 2 endpoints.

 • A PW context in both control and data-plane (i.e., the MPLS label) represents both the service and the service endpoint.
 • This led to scale issues specially with ELAN service, where a 10,000 service distributed over 100 endpoints would need 1Million PW labels (service IDs) per endpoint.
 • PW(s) follow L2 semantics had no Active/Active redundancy.

• SR-Optimized ELAN with data-plane MAC learning:

 • Improves the scale issue (e.g., 10,000 services will be presented by only 10,000 Service SIDs regardless of how many endpoints participate in the service).
 • Maintains the PW P2P semantics between 2 endpoints by presenting the endpoint by a node SID under the service SID in the SID list.
 • Solves the Active/Active Redundancy and multipathing using Segment Routing anycast SIDs.
SR-Optimized ELAN Service discovery

- ELAN Service SID advertised by BGP for service auto discovery:
 - Such that a single route contains a bitmap of all service SIDs as well as the Broadcast Node SID (for BUM traffic) associated with the advertising node.

- Upon receiving BGP update, a node can discover the service(s) hosted on the advertising node and hence can build P2MP flooding trees for L2 BUM traffic.

- P2MP flooding trees can be built for a given service or a group of services (aggregate inclusive)

- Ingress replication per service can be performed using broadcast SID.
SR-Optimized Elan service A/A Redundancy
Anycast SID per Ethernet segment

- **Anycast SID per Ether Segment (ES)** is configured on all nodes attached to the MH site and advertised by the nodes connected to a Multi-Home site.

- Each node attached to the MH site advertises the **same anycast SID** to allow other nodes to discover the group membership and perform DF election.

- **Aliasing/Multi-pathing** achieved using the same mechanisms used for anycast SID.

- For example, **node 5 learns a MAC address from the CE in dataplane and floods the BUM data packet** to all other nodes including node 6. Thus, a node receiver can learn in dataplane the **MAC as reachable via the anycast SID configured on node 5 and node 6**.

- **Node 6 applies Split Horizon** and hence does not send the received data packet back to the MH CE but **programs the MAC as reachable via the MH CE**.
SR-Optimized ELAN service Data-Plane MAC learning

- **MAC learned** in data-plane against the source node SID, encapsulated under the service SID in the L2 forwarded packets.

- **Node 3 learns** the CE MAC address and floods the BUM packet to all nodes configured with the same service SID.

- **Node 1, 2, 4, 5 and 6 learn** the MAC as reachable via the source node SID hosted on **node 3**.
SR-Optimized ELAN service ARP suppression

- **Gleaning** ARP packet requests and replies can be used to learn IP/MAC binding for ARP suppression.

- ARP replies are **unicast** however flooding ARP replies can allow all nodes to learn the MAC/IP bindings for the destinations too.
- Node failure is learned via BGP/IGP, and there is no need for additional MAC withdrawal mechanism.

- On link failure the node can withdraw in IGP/BGP the anycast SID associated with the site so as not to receive any packets destined to the MH site.

- On link failure between node 5 and CE, node 5 can forward the received L2 packet from the core to node 6 (using anycast SID shared by both 5 and 6) for fast convergence until it withdraws the anycast SID associated with the MH site.
Packets destined to the MH CE connected to node 5 and node 6 can be **load-balanced (ECMP/UCMP)** across the core given that the MAC addressed were **learned** via **anycast SID** hosted node 5 and 6.
Key take away SR-Optimized ELAN

• Each L2 service presented by a Global SID in each admin domain.
 • 2+ order of magnitude reduction in control plane messages and in data plane state in the MPLS label table.

• No need for any Services convergence in multihoming scenarios.
 • With the use of anycast SID for multihomed Ethernet Segments, when the underlay converges the service converges too.
Benefits of SR-Optimized ELAN

• Maintain **data-plane MAC learning benefits** such as fast **convergence**, fast **MAC move**, and **scale** through **conversational learning**.

• Bring the benefits of **A/A multihoming, multipathing**, and **ARP suppression**.

• **Simpler** and much better **control plane** scale over legacy PWs, by splitting the endpoint ID from the service ID and representing them by 2 SIDs in the SID segment list.

• **Leverage** the benefits of **Segment Routing anycast SID** for redundancy and fast **convergence**, and to discover nodes sharing the same anycast SID to perform DF election.

• **Eliminate** the need for any **overlay fast convergence**!
Thank You