Segment Routing for End-to-End IETF Network Slicing

draft-li-spring-sr-e2e-ietf-network-slicing-01

Zhenbin Li, Jie Dong @Huawei
Ran Pang @China Unicom
Yongqing Zhu @China Telecom

SPRING WG IETF 112 Online Meeting Nov. 2021
Background

• Network slicing can be used to meet the connectivity and performance requirement of different services or customers in a shared network
 • draft-ietf-teas-ietf-network-slices defines the concepts and general framework of IETF network slice
• IETF network slices can be realized by mapping one or a group of overlay VPNs to a VTN as the underlay
 • As described in draft-ietf-teas-enhanced-vpn
 • The SR based VPN+ mechanism is defined in draft-ietf-spring-sr-for-enhanced-vpn
• An end-to-end IETF network slice may span multiple network domains
 • In each domain, IETF network slice traffic needs to be mapped to a local VTN
• This document describes the SR extensions to support end-to-end IETF network slice
 • By introducing VTN Binding Segments
IETF Network Slice Framework and Realization

Framework

Concepts and general framework
draft-ietf-teas-ietf-network-slices

Realization framework based on VPN, TE and other technologies
draft-ietf-teas-enhanced-vpn

Framework of End-to-End IETF network slice
draft-li-teas-e2e-ietf-network-slicing

SR based network slice realization
draft-ietf-spring-sr-for-enhanced-vpn
draft-ietf-spring-resource-aware-segments

Scalable network slice realization
draft-dong-teas-enhanced-vpn-vtn-scalability
draft-dong-6man-enhanced-vpn-vtn-id
draft-li-mpls-enhanced-vpn-vtn-id

End-to-End IETF network slice
draft-li-spring-sr-e2e-ietf-network-slicing
draft-li-6man-e2e-ietf-network-slicing
draft-li-mpls-e2e-ietf-network-slicing

- Making use of SR resource-aware segments
- Making use of data plane VTN resource ID
- Introducing global VTN-ID and mapping mechanisms

Individual document
WG document
VTN Binding Segments

• VTN Binding Segment (BSID) is a special BSID used by the domain edge nodes to steer traffic into a local VTN

• A VTN BSID can be used to provide one of the following functions:
 1. Map the packet to a list of resource-aware segments which are associated with a local VTN
 2. Determine the local VTN-ID based on local mapping information, and instruct the encapsulation of the local VTN-ID to the data packet
 3. Obtain the local VTN-ID from the packet, and instruct the encapsulation of the local VTN-ID to the data packet
 4. Identify an SR policy which is bound to a local VTN

• The VTN BSID can be instantiated with SRv6 or SR-MPLS data plane
SRv6 Functions for VTN BSID

• The SRv6 End.B6.Encaps function defined in RFC 8986 can be used to realize the option 1 of the VTN BSID function
 • Map the packet to an SRv6 Segment List built with the resource-aware segments of the VTN

• New SRv6 functions are introduced for the other 3 VTN BSID functions
 • End.VTN.Encaps
 • End.BVTN.Encaps
 • End.B6VTN.Encaps
Any SID instance of this behavior is associated with one VTN-ID V and a source address A.

When node N receives a packet whose IPv6 DA is S, and S is a local
End.VTN.Encaps SID, N does the following:

S01. When an SRH is processed {
S02. If (Segments Left == 0) {
S03. Stop processing the SRH, and proceed to process the next
header in the packet, whose type is identified by
the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address
with Code 0 (Hop limit exceeded in transit),
interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If (Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address
with Code 0 (Erroneous header field encountered)
and Pointer set to the Segments Left field,
interrupt packet processing, and discard the packet.
S11. }
S12. Decrement IPv6 Hop Limit by 1
S13. Decrement Segments Left by 1
S14. Update IPv6 DA with Segment List [Segments Left]
S15. Set the VTN-ID option to V in the HBH Ext header
S16. Submit the packet to the egress IPv6 FIB lookup for
transmission to the new destination
S17. }
When node N receives a packet whose IPv6 DA is S, and S is a local End.BVTN.Encaps SID, N does the following:

S01. When an SRH is processed {
S02. If (Segments Left == 0) {
S03. Stop processing the SRH, and proceed to process the next header in the packet, whose type is identified by the Next Header field in the routing header.
S04. }
S05. If (IPv6 Hop Limit <= 1) {
S06. Send an ICMP Time Exceeded message to the Source Address with Code 0 (Hop limit exceeded in transit), interrupt packet processing, and discard the packet.
S07. }
S08. max_LE = (Hdr Ext Len / 2) - 1
S09. If (Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
S10. Send an ICMP Parameter Problem to the Source Address with Code 0 (Erroneous header field encountered) and Pointer set to the Segments Left field, interrupt packet processing, and discard the packet.
S11. }
S12. Obtain the VTN-ID V from the argument part of the IPv6 DA
S13. Decrement IPv6 Hop Limit by 1
S14. Decrement Segments Left by 1
S15. Update IPv6 DA with Segment List [Segments Left]
S16. Set the VTN-ID option to V in the HBH Ext header
S17. Submit the packet to the egress IPv6 FIB lookup for transmission to the new destination
S18. }
When an SRH is processed {
 If (Segments Left == 0) {
 Stop processing the SRH, and proceed to process the next header in the packet, whose type is identified by the Next Header field in the routing header.
 }
 If (IPv6 Hop Limit <= 1) {
 Send an ICMP Time Exceeded message to the Source Address with Code 0 (Hop limit exceeded in transit), interrupt packet processing, and discard the packet.
 }
 max_LE = (Hdr Ext Len / 2) - 1
 If ((Last Entry > max_LE) or (Segments Left > Last Entry+1)) {
 Send an ICMP Parameter Problem to the Source Address with Code 0 (Erroneous header field encountered) and Pointer set to the Segments Left field, interrupt packet processing, and discard the packet.
 }
 Decrement IPv6 Hop Limit by 1
 Decrement Segments Left by 1
 Update IPv6 DA with Segment List [Segments Left]
 Push a new IPv6 header with its own SRH containing B, and the VTN-ID option set to V in the MBH Ext header
 Set the outer IPv6 SA to A
 Set the outer IPv6 DA to the first SID of B
 Set the outer Payload Length, Traffic Class, Flow Label, Hop Limit, and Next Header fields
 Submit the packet to the egress IPv6 FIB lookup for transmission to the new destination
}
VTN BSID in SR-MPLS

• Similarly, VTN BSID can be instantiated using SR-MPLS Binding SIDs with different semantics
 • Please refer to the draft for the details
Next Steps

• Comments and feedback are welcome

• Refine this draft accordingly
Thank You