draft-ietf-suit-manifest-16

ietf 112

Brendan Moran
Summary of changes

• Split draft into four documents:
 • draft-ietf-suit-manifest-16
 • draft-ietf-suit-firmware-encryption
 • draft-moran-suit-update-management
 • draft-moran-suit-trust-domains

• Integrated element keys

• URI definition
What is covered

• Authentication
• Flow Control
 • Try Each
 • Multiple components
• Parameter setting
 • Only Override Parameters
• Severable Members
• Text description
What is not covered

• Delegation
• Dependency manifests
 • Integrated dependencies
• Multiple SUIT Processors
• Payload transforms:
 • Encrypted Firmware/Manifests
 • Generic Compression
 • Differential Compression

• Conditions for managing updates
 • Version number match
 • Battery level
 • Use Before
 • Image not match
 • Check Authorization

• Directives for managing updates
 • Wait for event

• Metadata for non-recipient devices
 • CoSWID / CoRIM
Integrated Element Keys

- Integrated payloads (and manifests) are encoded in the envelope with tstr keys.
 - This simplifies the URI->integrated key conversion logic.
 - For short tstr keys, the encoding is smaller than equivalent numeric encoding
 - Enables a new use-case, where an intermediary embeds the payload in the envelope
 - Still allows a failover to fetching from URI
URIs

• Changed requirement for URI parameter to URI Reference
Open issues: MTI Signature alg

• IETF111:
 • Need more information on implementation overhead for HSS-LMS
 • Verification time: Verification time is $\approx 1/3$ ECDSA
 • Possible reason: most libraries are optimized for 1 long hash, not many small hashes.

• Summary:
 • Signature:
 • ECDSA:
 • Mature Tooling
 • Not quantum resistant
 • Long verification time
 • HSS-LMS:
 • Immature Tooling
 • Private key requires maintenance
 • Fixed number of signatures possible => key rotation may be necessary
 • Signatures are $>1kB$
 • Verification time is $\approx 1/3$ ECDSA
Open issues

• Optional-to-implement algorithms
 • RSA
 • Expected time horizon for quantum annealing vulnerability is 2030 (RSA-768) to 2035 (RSA-4096)
 • SHA-512?
 • SHA3?

• Recommendations for crypto agility in constrained devices?