Pseudorandom cTLS

TLSWG, IETF 112 (November 2021)
Authors: Ben Schwartz, Chris Patton
Intended status: Experimental
Slides v00
What

- An experimental extension for cTLS that makes the wire image purely pseudorandom, i.e. indistinguishable from random to an observer who doesn’t know the template.
- This is possible because:
 - cTLS requires a pre-shared “template” that client and server agree on out-of-band.
 - cTLS is already unparsable to anyone who doesn’t know the template.
- Layered between cTLS (unmodified) and the transport.
Why

- **Security** - Prevents protocol confusion attacks (e.g. NAT Slipstream) by ensuring that neither party can influence the other’s output.
- **Privacy** - Conceals which cTLS template is in use.
- **Protocol Agility** - Ensures that the bitstream is only parsed by authorized parties.
How

- Uses a Strong Tweakable Pseudorandom Permutation (STPRP).
 - Also known as a “wide” or “variable-input-length” block cipher.
 - Can be constructed from conventional primitives, e.g. AES.

- Applies the STPRP to
 - Plaintext messages
 - Segments containing headers and at least 16 bytes of ciphertext

- No ciphertext expansion (zero overhead)
 - Relies on TLS’s integrity checks (AEAD and Finished)
Baseline cTLS Example stream
Pseudorandom cTLS Example stream (First Layer)
Pseudorandom cTLS Example stream (Second Layer)
Next steps

- Seeking WG input on
 - Cryptographic primitives (currently STPRP)
 - STPRP enables easiest analysis but may not be necessary
 - Standard AEADs can be used if we allow overhead > 0
 - Construction of the “tweak” (analogous to nonce, may repeat)
 - Strategy for formal analysis
 - Best way to integrate with cTLS
 - Preferred document status (currently Experimental)

- Some requested changes to the cTLS draft

- May pursue WG adoption at some future point
 - What would you like to see in an adopted version?
Bonus: Privacy threat model

- Passive adversaries
 - All Pseudorandom cTLS streams should look the same, despite different templates and keys
 - Timing and size leaks are out of scope (but should be addressed by some future draft…)

- Active adversaries
 - A probing adversary shouldn’t be able to tell which template is in use.
 - Preventing adversaries from measuring any aspect of the template requires very carefully tuned error responses (fragile!).
Bonus: Dirty details

- Handshakes messages need to contain good entropy, and each fragment needs to be at least 16 bytes long.
 - TLS Alerts have to be padded with randomness.
 - We could also add 16 zeros as a MAC...
- cTLS/UDP headers have unpredictable lengths, which can lead to overlapping STPRP segments if a datagram contains multiple short records. Encoding must proceed back-to-front, starting with the last record.
 - This could be fixed in cTLS!