

Scalability of IPv6 Transition Technologies for IPv4aaS

draft-lencse-v6ops-transition-scalability

Gábor LENCSE

lencse@sze.hu

Széchenyi István University

IETF 112, v6ops, November 11, 2021.

What is this new draft about?

- Scalability measurement results of iptables (stateful NAT44)
 - Primary goal: to serve as a sample for **stateful NAT64** tests
 - Secondary goal: they may be interesting for some network operators
- The types of measurements
 - Scalability against the number of CPU cores
 - Scalability against the number of concurrent sessions
- Using the methodology described in

G. Lencse, K. Shima, "Benchmarking Methodology for Stateful NATxy Gateways using RFC 4814 Pseudorandom Port Numbers", Internet Draft, October 10, 2021, <u>https://datatracker.ietf.org/doc/html/draft-lencse-bmwg-benchmarking-stateful</u>

Scalability against the number of CPU cores

- The number of CPU cores were set to: 1, 2, 4, 8, 16
- Quantities measured:
 - Maximum connection establishment rate
 - Throughput (using bidirectional traffic), as recommended by RFC 8219
- Parameters
 - Dell PowerEdge R430 servers
 - 2.1GHz Intel Xeon E5-2683 v4 CPUs
 - 384GB 2400MHz DDR4 RAM
 - Intel 10G dual port X540 network adapters
 - Debian 9.13 Linux operating system with 4.9.0-16-amd64 kernel

Scalability against the number of CPU cores

num. cores	1	2	4	8	16
cps median	223.5	371.1	708.7	1,341	2,383
cps min	221.6	367.7	701.7	1,325	2,304
cps max	226.7	375.9	723.6	1,376	2,417
cps rel. scale up	1	0.830	0.793	0.750	0.666
throughput med.	414.9	742.3	1,379	2,336	4,557
throughput min	413.9	740.6	1,373	2,311	4,436
throughput max	416.1	746.9	1,395	2,361	4,627
tp. rel. scale up	1	0.895	0.831	0.704	0.686

Units: 1,000 connections per second, 1,000 frames per second

Scalability against the number of concurrent sessions

- The number of concurrent sessions was set with the source port number destination port number ranges
 - Usually increased fourfold, except the last case (due to memory limit)
 - The hash table size was usually increased proportionally, except the last two cases (due to memory limit)
 - NUMA issue influenced the last measurement
 - The connection tracking table did not fit into the NUMA local memory
- Quantities measured:
 - Maximum connection establishment rate
 - Throughput (using bidirectional traffic), as recommended by RFC 8219

Scalability against the number of concurrent sessions

num. conn.	1.56M	6.35M	25M	100M	400M	800M
hash table size	2^21	2^23	2^25	2^27	2^28	2^28
n.c./h.t.s.	0.745	0.745	0.745	0.745	1.490	2.980
cps median	2.406	2.279	2.278	2.237	2.013	1.405
cps min	2.358	2.226	2.226	2.124	1.983	1.390
cps max	2.505	2.315	2.317	2.29	2.05	1.440
throughput med.	5.326	4.369	4.51	4.516	4.244	3.689
throughput min	5.217	4.240	3.994	4.373	4.217	3.670
throughput max	5.533	4.408	4.572	4.537	4.342	3.709

Units: 1,000,000 connections per second, 1,000,000 frames per second

My questions

- Are these results <u>useful</u> and <u>sufficient</u> for the network operators?
- Will <u>the same method</u> be appropriate for the stateful NAT64 scalability measurements?
- Is <u>Jool</u> (https://jool.mx) a good choice of implementation to test?