
TBD H. Birkholz
Internet-Draft Fraunhofer SIT
Intended status: Standards Track M. Riechert
Expires: 28 October 2023 A. Delignat-Lavaud
 C. Fournet
 Microsoft
 26 April 2023

 Countersigning COSE Envelopes in Transparency Services
 draft-birkholz-scitt-receipts-03

Abstract

 A transparent and authentic Transparent Registry service in support
 of a supply chain’s integrity, transparency, and trust requires all
 peers that contribute to the Registry operations to be trustworthy
 and authentic. In this document, a countersigning variant is
 specified that enables trust assertions on Merkle-tree based
 operations for global supply chain registries. A generic procedure
 for producing payloads to be signed and validated is defined and
 leverages solutions and principles from the Concise Signing and
 Encryption (COSE) space.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 October 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Birkholz, et al. Expires 28 October 2023 [Page 1]

Internet-Draft SCITT Receipts April 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Notation 3
 2. Common Parameters . 3
 3. Generic Receipt Structure 4
 4. COSE_Sign1 Countersigning 4
 4.1. Countersigner Header Parameters 5
 5. Receipt Verification . 6
 6. CCF Tree Algorithm . 6
 6.1. Additional Parameters 6
 6.2. Cryptographic Components 7
 6.2.1. Binary Merkle Trees 7
 6.2.2. Merkle Inclusion Proofs 8
 6.3. Encoding Signed Envelopes into Tree Leaves 8
 6.4. Receipt Contents Structure 9
 6.5. Receipt Contents Verification 10
 6.6. Receipt Generation 11
 7. CBOR Encoding Restrictions 12
 8. Privacy Considerations 12
 9. Security Considerations 12
 10. IANA Considerations . 12
 10.1. Additions to Existing Registries 12
 10.1.1. New Entries to the COSE Header Parameters
 Registry . 12
 10.2. New SCITT-Related Registries 13
 10.2.1. Tree Algorithms 13
 10.2.2. Signature Algorithms 13
 11. References . 14
 11.1. Normative References 14
 11.2. Informative References 15
 Authors’ Addresses . 15

1. Introduction

 // This draft is retained as a -03 version. It’s contents will be
 // distributed between [I-D.ietf-scitt-architecture] and
 // [I-D.steele-cose-merkle-tree-proofs] soon.

Birkholz, et al. Expires 28 October 2023 [Page 2]

Internet-Draft SCITT Receipts April 2023

 This document defines a method for issuing and verifying
 countersignatures on COSE_Sign1 messages included in an authenticated
 data structure such as a Merkle Tree.

 We adopt the terminology of the Supply Chain Integrity, Transparency,
 and Trust (SCITT) architecture document (An Architecture for
 Trustworthy and Transparent Digital Supply Chains, see
 [I-D.ietf-scitt-architecture]): Claim, Envelope, Transparency
 Service, Registry, Receipt, and Verifier.

 [TODO] Do we need to explain or introduce them here? We may also
 define Tree (our shorthand for authenticated data structure), Root
 (a succinct commitment to the Tree, e.g., a hand) and use Issuer
 instead of TS.

 From the Verifier’s viewpoint, a Receipt is similar to a
 countersignature V2 on a single signed message: it is a universally-
 verifiable cryptographic proof of endorsement of the signed envelope
 by the countersigner.

 Compared with countersignatures on single COSE envelopes,

 * Receipts countersign the envelope in context, providing
 authentication both of the envelope and of its logical position in
 the authenticated data structure.

 * Receipts are proof of commitment to the whole contents of the data
 structure, even if the Verifier knows only some of its contents.

 * Receipts can be issued in bulk, using a single public-key
 signature for issuing a large number of Receipts.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Common Parameters

 Verifiers are configured by a collection of parameters to identify a
 Transparency Service and verify its Receipts. These parameters MUST
 be fixed for the lifetime of the Transparency Service and securely
 communicated to all Verifiers.

 At minimum, these parameters include:

Birkholz, et al. Expires 28 October 2023 [Page 3]

Internet-Draft SCITT Receipts April 2023

 * a Service identifier: An opaque identifier (e.g. UUID) that
 uniquely identifies the service and can be used to securely
 retrieve all other Service parameters.

 * The Tree algorithm used for issuing receipts, and its additional
 parameters, if any. This document creates a registry (see
 Section 10.2.1) and describes an initial set of tree algorithms.

 [TODO] The architecture also has fixed TS registration
 policies.

3. Generic Receipt Structure

 A Receipt represents a countersignature issued by a Transparency
 Service.

 The Receipt structure is a CBOR array with two items, in order:

 * protected: The protected header of the countersigner.

 * contents: The proof as a CBOR structure determined by the tree
 algorithm.

 Receipt = [
 protected: bstr .cbor {
 * label => value
 },
 contents: any
]
 label = tstr / int
 value = any

 Each tree algorithm MUST define its contents type and procedures for
 issuing and verifying a receipt.

4. COSE_Sign1 Countersigning

 While the tree algorithms may differ in the way they aggregate
 multiple envelopes to compute a digest to be signed by the TS, they
 all share the same representation of the individual envelopes to be
 countersigned (intuitively, their leaves).

 This document uses the principles and structure definitions of
 COSE_Sign1 countersigning V2 ([I-D.ietf-cose-countersign]). Each
 envelope is authenticated using a Countersign_structure array,
 recalled below.

Birkholz, et al. Expires 28 October 2023 [Page 4]

Internet-Draft SCITT Receipts April 2023

 Countersign_structure = [
 context: "CounterSignatureV2",
 body_protected: empty_or_serialized_map,
 sign_protected: empty_or_serialized_map,
 external_aad: bstr,
 payload: bstr,
 other_fields: [
 signature: bstr
]
]

 The body_protected, payload, and signature fields are copied from the
 COSE_Sign1 message being countersigned.

 The sign_protected field is provided by the TS, see Section 4.1
 below. This field is included in the Receipt contents to enable the
 Verifier to re-construct Countersign_structure, as specified by the
 tree algorithm.

 By convention, the TS always provides an empty external_aad: a zero-
 length bytestring.

 Procedure for reconstruction of Countersign_structure:

 1. Let Target be the COSE_Sign1 message that corresponds to the
 countersignature. Different environments will have different
 mechanisms to achieve this. One obvious mechanism is to embed
 the Receipt in the unprotected header of Target. Another
 mechanism may be to store both artifacts separately and use a
 naming convention, database, or other method to link both
 together.

 2. Extract body_protected, payload, and signature from Target.

 3. Create a Countersign_structure using the extracted fields from
 Target, and sign_protected from the Receipt contents.

4.1. Countersigner Header Parameters

 The following parameters MUST be included in the protected header of
 the countersigner (sign_protected in Section 4):

 * Service ID (label: TBD): The Service identifier, as defined in the
 Transparency Service parameters.

 * Tree Algorithm (label: TBD): The Tree Algorithm used for issuing
 the receipt, as defined in the Transparency Service parameters.

Birkholz, et al. Expires 28 October 2023 [Page 5]

Internet-Draft SCITT Receipts April 2023

 * Issued At (label: TBD): The time at which the countersignature was
 issued as the number of seconds from 1970-01-01T00:00:00Z UTC,
 ignoring leap seconds.

5. Receipt Verification

 Given a signed envelope and a Receipt for it, the following steps
 must be followed to verify this Receipt.

 1. Decode the protected header of the Receipt and look-up the TS
 parameters using the Service ID header parameter.

 2. Verify that the Tree Algorithm parameter value in the receipt
 protected header matches the one in the TS parameters.

 3. Construct a Countersign_structure as described in Section 4,
 using the protected header of the Receipt as sign_protected.

 4. CBOR-encode Countersign_structure as To-Be-Included, using the
 CBOR encoding described in Section 7.

 5. Invoke the Tree Algorithm receipt verification procedure with the
 TS parameters and To-Be-Included as inputs.

 The Verifier SHOULD apply additional checks before accepting the
 countersigned envelope as valid, based on its protected headers and
 payload.

6. CCF Tree Algorithm

 The CCF tree algorithm specifies an algorithm based on a binary
 Merkle tree over the sequence of all ledger entries, as implemented
 in the CCF framework (see [CCF_Merkle_Tree]).

6.1. Additional Parameters

 The algorithm requires that the TS define additional parameters:

 * Signature Algorithm: The ECDSA signature algorithm used to sign
 the Merkle tree root (see Section 10.2.2).

 * Service Certificate: The self-signed X.509 certificate used as
 trust anchor to verify signatures generated by the transparency
 service using the Signature Algorithm.

Birkholz, et al. Expires 28 October 2023 [Page 6]

Internet-Draft SCITT Receipts April 2023

 All definitions in this section use the hash algorithm required by
 the signature algorithm set in the TS parameters (see
 Section Section 6.1). We write HASH to refer to this algorithm, and
 HASH_SIZE for the fixed length of its output in bytes.

6.2. Cryptographic Components

 Note: This section is adapted from Section 2.1 of [RFC9162], which
 provides additional discussion of Merkle trees.

6.2.1. Binary Merkle Trees

 The input of the Merkle Tree Hash (MTH) function is a list of n
 bytestrings, written D_n = {d[0], d[1], ..., d[n-1]}. The output is a
 single HASH_SIZE bytestring, also called the tree root hash.

 This function is defined as follows:

 The hash of an empty list is the hash of an empty string:

 MTH({}) = HASH().

 The hash of a list with one entry (also known as a leaf hash) is:

 MTH({d[0]}) = HASH(d[0]).

 For n > 1, let k be the largest power of two smaller than n (i.e., k
 < n <= 2k). The Merkle Tree Hash of an n-element list D_n is then
 defined recursively as:

 MTH(D_n) = HASH(MTH(D[0:k]) || MTH(D[k:n])),

 where:

 * || denotes concatenation

 * : denotes concatenation of lists

 * D[k1:k2] = D’_(k2-k1) denotes the list {d’[0] = d[k1], d’[1] =
 d[k1+1], ..., d’[k2-k1-1] = d[k2-1]} of length (k2 - k1).

Birkholz, et al. Expires 28 October 2023 [Page 7]

Internet-Draft SCITT Receipts April 2023

6.2.2. Merkle Inclusion Proofs

 A Merkle inclusion proof for a leaf in a Merkle Tree is the shortest
 list of intermediate hash values required to re-compute the tree root
 hash from the digest of the leaf bytestring. Each node in the tree
 is either a leaf node or is computed from the two nodes immediately
 below it (i.e., towards the leaves). At each step up the tree
 (towards the root), a node from the inclusion proof is combined with
 the node computed so far. In other words, the inclusion proof
 consists of the list of missing nodes required to compute the nodes
 leading from a leaf to the root of the tree. If the root computed
 from the inclusion proof matches the true root, then the inclusion
 proof proves that the leaf exists in the tree.

6.2.2.1. Verifying an Inclusion Proof

 When a client has received an inclusion proof and wishes to verify
 inclusion of a leaf_hash for a given root_hash, the following
 algorithm may be used to prove the hash was included in the
 root_hash:

 recompute_root(leaf_hash, proof):
 h := leaf_hash
 for [left, hash] in proof:
 if left
 h := HASH(hash || h)
 else
 h := HASH(h || hash)
 return h

6.2.2.2. Generating an Inclusion Proof

 Given the MTH input D_n = {d[0], d[1], ..., d[n-1]} and an index i <
 n in this list, run the MTH algorithm and record the position and
 value of every intermediate hash concatenated and hashed first with
 the digest of the leaf, then with the resulting intermediate hash
 value. (Most implementations instead record all intermediate hash
 computations, so that they can produce all inclusion proofs for a
 given tree by table lookups.)

6.3. Encoding Signed Envelopes into Tree Leaves

 This section describes the encoding of signed envelopes and auxiliary
 ledger entries into the leaf bytestrings passed as input to the
 Merkle Tree function.

 Each bytestring is computed from three inputs:

Birkholz, et al. Expires 28 October 2023 [Page 8]

Internet-Draft SCITT Receipts April 2023

 * internal_hash: a string of HASH_SIZE bytes;

 * internal_data: a string of at most 1024 bytes; and

 * data_hash: either the HASH of the CBOR-encoded
 Countersign_structure of the signed envelope, using the CBOR
 encoding described in Section 7, or a bytestring of size HASH_SIZE
 filled with zeroes for auxiliary ledger entries.

 as the concatenation of three hashes:

 LeafBytes = internal_hash || HASH(internal_data) || data_hash

 This ensures that leaf bytestrings are always distinct from the
 inputs of the intermediate computations in MTH, which always consist
 of two hashes, and also that leaf bytestrings for signed envelopes
 and for auxiliary ledger entries are always distinct.

 The internal_hash and internal_data bytestrings are internal to the
 CCF implementation. Similarly, the auxiliary ledger entries are
 internal to CCF. They are opaque to receipt Verifiers, but they
 commit the TS to the whole ledger contents and may be used for
 additional, CCF-specific auditing.

6.4. Receipt Contents Structure

 The Receipt contents structure is a CBOR array. The items of the
 array in order are:

 * signature: the ECDSA signature over the Merkle tree root as bstr.
 Note that the Merkle tree root hash is the prehashed input to
 ECDSA and is not hashed twice.

 * node_certificate: a DER-encoded X.509 certificate for the public
 key for signature verification. This certificate MUST be a valid
 CCF node certificate for the service; in particular, it MUST form
 a valid X.509 certificate chain with the service certificate.

 * inclusion_proof: the intermediate hashes to recompute the signed
 root of the Merkle tree from the leaf digest of the envelope.

 - The array MUST have at most 64 items.

 - The inclusion proof structure is an array of [left, hash] pairs
 where left indicates the ordering of digests for the
 intermediate hash compution. The hash MUST be a bytestring of
 length HASH_SIZE.

Birkholz, et al. Expires 28 October 2023 [Page 9]

Internet-Draft SCITT Receipts April 2023

 * leaf_info: auxiliary inputs to recompute the leaf digest included
 in the Merkle tree: the internal hash and the internal data.

 - internal_hash MUST be a bytestring of length HASH_SIZE;

 - internal_data MUST be a bytestring of length less than 1024.

 The inclusion of an additional, short-lived certificate endorsed by
 the TS enables flexibility in its distributed implementation, and may
 support additional CCF-specific auditing.

 The CDDL fragment that represents the above text follows.

 ReceiptContents = [
 signature: bstr,
 node_certificate: bstr,
 inclusion_proof: [+ ProofElement],
 leaf_info: LeafInfo
]

 ProofElement = [
 left: bool
 hash: bstr
]

 LeafInfo = [
 internal_hash: bstr,
 internal_data: bstr
]

6.5. Receipt Contents Verification

 Given the To-Be-Included bytes (see Section 5) and the TS parameters,
 the following steps must be followed to verify the Receipt contents.

1. Verify that the Receipt Content structure is well-formed, as
 described in Section 6.4.

2. Compute LeafBytes as the bytestring concatenation of the internal
 hash, the hash of internal data, and the hash of the To-Be-
 Included bytes.

 LeafBytes := internal_hash || HASH(internal_data) || HASH(To-Be-Included)

3. Compute the leaf digest.

 LeafHash := HASH(LeafBytes)

Birkholz, et al. Expires 28 October 2023 [Page 10]

Internet-Draft SCITT Receipts April 2023

4. Compute the root hash from the leaf hash and the Merkle proof
 using the Merkle Tree Hash Algorithm found in the service’s
 parameters (see Section 6.1):

 root := recompute_root(LeafHash, inclusion_proof)

5. Verify the certificate chain established by the node certificate
 embedded in the receipt and the fixed service certificate in the
 TS parameters (see Section 6.1). TBD needs more details

6. Verify that signature is a valid signature value of the root
 hash, using the public key of the node certificate and the
 Signature Algorithm of the TS parameters.

6.6. Receipt Generation

 This document provides a reference algorithm for producing valid
 receipts, but it omits any discussion of TS registration policy and
 any CCF-specific implementation details.

 The algorithm takes as input a list of entries to be jointly
 countersigned, each entry consisting of internal_hash, internal_data,
 and an optional signed envelope. (This optional item reflects that a
 CCF ledger records both signed envelopes and auxiliary entries.)

 1. For each signed envelope, create the countersigner protected
 header and compute the Countersign_structure as described in
 Section 4.

 2. For each item in the list, compute LeafBytes as the bytestring
 concatenation of the internal hash, the hash of internal data
 and, if the envelope is present, the hash of the CBOR-encoding of
 Countersign_structure, using the CBOR encoding described in
 Section 7, otherwise a HASH_SIZE bytestring of zeroes.

 3. Compute the tree root hash by applying MTH to the resulting list
 of leaf bytestrings, keeping the results for all intermediate
 HASH values.

 4. Select a valid node_certificate and compute a signature of the
 root of the tree with the corresponding signing key.

 5. For each signed envelope provided in the input,

 * Collect an inclusion_proof by selecting intermediate hash
 values, as described above.

Birkholz, et al. Expires 28 October 2023 [Page 11]

Internet-Draft SCITT Receipts April 2023

 * Produce the receipt contents using this inclusion_proof, the
 fixed node_certificate and signature, and the bytestrings
 internal_hash and internal_data provided with the envelope.

 * Produce the receipt using the countersigner protected header
 and this receipt’s contents.

7. CBOR Encoding Restrictions

 In order to always regenerate the same byte string for the "to be
 included" and "to be hashed" values, the core deterministic encoding
 rules defined in Section 4.2.1 of [RFC8949] MUST be used for all
 their CBOR structures.

8. Privacy Considerations

 TBD

9. Security Considerations

 TBD

10. IANA Considerations

10.1. Additions to Existing Registries

10.1.1. New Entries to the COSE Header Parameters Registry

 IANA is requested to register the new COSE Header parameters defined
 below in the "COSE Header Parameters" registry.

10.1.1.1. COSE_Sign1 Countersign receipt

 Name: COSE_Sign1 Countersign receipt

 Label: TBD (temporary: 394, see also [I-D.ietf-scitt-architecture])

 Value Type: [+ Receipt]

 Description: One or more COSE_Sign1 Countersign Receipts to be
 embedded in the unprotected header of the countersigned COSE_Sign1
 message.

10.1.1.2. Issued At

 Name: Issued At

 Label: TBD

Birkholz, et al. Expires 28 October 2023 [Page 12]

Internet-Draft SCITT Receipts April 2023

 Value Type: uint

 Description: The time at which the signature was issued as the number
 of seconds from 1970-01-01T00:00:00Z UTC, ignoring leap seconds.

10.2. New SCITT-Related Registries

 IANA is asked to add a new registry "TBD" to the list that appears at
 https://www.iana.org/assignments/.

 The rest of this section defines the subregistries that are to be
 created within the new "TBD" registry.

10.2.1. Tree Algorithms

 IANA is asked to establish a registry of tree algorithm identifiers,
 named "Tree Algorithms", with the following registration procedures:
 TBD

 The "Tree Algorithms" registry initially consists of:

 +============+====================+===============+
 | Identifier | Tree Algorithm | Reference |
 +============+====================+===============+
 | CCF | CCF tree algorithm | This document |
 +------------+--------------------+---------------+

 Table 1: Initial content of Tree Algorithms
 registry

 The designated expert(s) should ensure that the proposed algorithm
 has a public specification and is suitable for use as [TBD].

10.2.2. Signature Algorithms

 IANA is asked to establish a registry of signature algorithm
 identifiers, named "Signature Algorithms", with the following
 registration procedures: TBD

 The "Signature Algorithms" registry initially consists of:

Birkholz, et al. Expires 28 October 2023 [Page 13]

Internet-Draft SCITT Receipts April 2023

 +============+=====================+===========+
 | Identifier | Signature Algorithm | Reference |
 +============+=====================+===========+
 | ES256 | ECDSA w/ SHA-256 | [RFC9053] |
 +------------+---------------------+-----------+

 Table 2: Initial content of Signature
 Algorithms registry

 The designated expert(s) should ensure that the proposed algorithm
 has a public specification and is suitable for use as a cryptographic
 signature algorithm.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://doi.org/10.17487/RFC2119>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://doi.org/10.17487/RFC6234>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://doi.org/10.17487/RFC8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://doi.org/10.17487/RFC8174>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://doi.org/10.17487/RFC8949>.

 [RFC9053] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,
 August 2022, <https://doi.org/10.17487/RFC9053>.

 [RFC9162] Laurie, B., Messeri, E., and R. Stradling, "Certificate
 Transparency Version 2.0", RFC 9162, DOI 10.17487/RFC9162,
 December 2021, <https://doi.org/10.17487/RFC9162>.

Birkholz, et al. Expires 28 October 2023 [Page 14]

Internet-Draft SCITT Receipts April 2023

11.2. Informative References

 [CCF_Merkle_Tree]
 Microsoft Research, "CCF - Merkle Tree", n.d.,
 <https://microsoft.github.io/CCF/main/architecture/
 merkle_tree.html>.

 [I-D.ietf-cose-countersign]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Countersignatures", Work in Progress, Internet-Draft,
 draft-ietf-cose-countersign-10, 20 September 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cose-
 countersign-10>.

 [I-D.ietf-scitt-architecture]
 Birkholz, H., Delignat-Lavaud, A., Fournet, C., and Y.
 Deshpande, "An Architecture for Trustworthy and
 Transparent Digital Supply Chains", Work in Progress,
 Internet-Draft, draft-ietf-scitt-architecture-01, 13 March
 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
 scitt-architecture-01>.

 [I-D.steele-cose-merkle-tree-proofs]
 Steele, O., Birkholz, H., Riechert, M., Delignat-Lavaud,
 A., and C. Fournet, "Concise Encoding of Signed Merkle
 Tree Proofs", Work in Progress, Internet-Draft, draft-
 steele-cose-merkle-tree-proofs-00, 13 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-steele-cose-
 merkle-tree-proofs-00>.

Authors’ Addresses

 Henk Birkholz
 Fraunhofer SIT
 Rheinstrasse 75
 64295 Darmstadt
 Germany
 Email: henk.birkholz@sit.fraunhofer.de

 Maik Riechert
 Microsoft
 United Kingdom
 Email: Maik.Riechert@microsoft.com

Birkholz, et al. Expires 28 October 2023 [Page 15]

Internet-Draft SCITT Receipts April 2023

 Antoine Delignat-Lavaud
 Microsoft
 United Kingdom
 Email: antdl@microsoft.com

 Cedric Fournet
 Microsoft
 United Kingdom
 Email: fournet@microsoft.com

Birkholz, et al. Expires 28 October 2023 [Page 16]

