
TBD H. Birkholz
Internet-Draft Fraunhofer SIT
Intended status: Standards Track A. Delignat-Lavaud
Expires: 27 April 2023 C. Fournet
 Microsoft Research
 Y. Deshpande
 ARM
 24 October 2022

 An Architecture for Trustworthy and Transparent Digital Supply Chains
 draft-birkholz-scitt-architecture-02

Abstract

 Traceability of physical and digital artifacts in supply chains is a
 long-standing, but increasingly serious security concern. The rise
 in popularity of verifiable data structures as a mechanism to make
 actors more accountable for breaching their compliance promises has
 found some successful applications to specific use cases (such as the
 supply chain for digital certificates), but lacks a generic and
 scalable architecture that can address a wider range of use cases.

 This memo defines a generic and scalable architecture to enable
 transparency across any supply chain with minimum adoption barriers
 for producers (who can register their claims on any Transparency
 Service (TS), with the guarantee that all consumers will be able to
 verify them) and enough flexibility to allow different
 implementations of Transparency Services with various auditing and
 compliance requirements.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-birkholz-scitt-architecture/.

 Discussion of this document takes place on the scitt non-WG mailing
 list (mailto:scitt@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/scitt/. Subscribe at
 https://www.ietf.org/mailman/listinfo/scitt/.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Birkholz, et al. Expires 27 April 2023 [Page 1]

Internet-Draft SCITT Architecture October 2022

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 April 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Notation 5
 2. Use Cases . 6
 2.1. Software Bill of Materials (SBOM) 6
 2.2. Confidential Computing 6
 2.3. Cold Chains for Seafood 7
 3. Terminology . 7
 4. Definition of Transparency 9
 5. Architecture Overview . 10
 5.1. Claim Issuance and Registration 12
 5.1.1. Issuer Identity 12
 5.1.2. Naming Artifacts 13
 5.1.3. Claim Metadata 13
 5.2. Transparency Service (TS) 13
 5.2.1. Service Identity, Remote Attestation, and Keying . . 14
 5.2.2. Registration Policies 15
 5.2.3. Registry Security Requirements 16
 5.3. Verifying Transparent Claims 17
 6. Claim Issuance, Registration, and Verification 18
 6.1. Envelope and Claim Format 18

Birkholz, et al. Expires 27 April 2023 [Page 2]

Internet-Draft SCITT Architecture October 2022

 6.2. Claim Issuance . 20
 6.3. Standard registration policies 21
 6.4. Registering Signed Claims 22
 6.5. Validation of Transparent Claims 23
 7. Federation . 24
 8. Transparency Service API 24
 8.1. Messages . 25
 8.1.1. Register Signed Claims 25
 8.1.2. Retrieve Registration Receipt 26
 9. Privacy Considerations 26
 10. Security Considerations 27
 10.1. Threat Model . 27
 10.1.1. Claim authentication and transparency. 27
 10.1.2. Confidentiality and privacy. 29
 10.1.3. Cryptographic Assumptions 30
 10.1.4. TS Clients . 30
 10.1.5. Identity . 30
 11. IANA Considerations . 31
 12. References . 31
 12.1. Normative References 31
 12.2. Informative References 31
 Appendix A. Attic . 32
 Authors’ Addresses . 32

1. Introduction

 This document describes a scalable and flexible decentralized
 architecture to enhance auditability and accountability in various
 existing and emerging supply chains. It achieves this goal by
 enforcing the following complementary security guarantees:

 1. statements made by issuers about supply chain artifacts must be
 identifiable, authentic, and non-repudiable;

 2. such statements must be registered on a secure append-only
 Registry so that their provenance and history can be
 independently and consistently audited;

 3. issuers can efficiently prove to any other party the registration
 of their claims; verifying this proof ensures that the issuer is
 consistent and non-equivocal when making claims.

Birkholz, et al. Expires 27 April 2023 [Page 3]

Internet-Draft SCITT Architecture October 2022

 The first guarantee is achieved by requiring issuers to sign their
 statements and associated metadata using a distributed public key
 infrastructure. The second guarantee is achieved by storing the
 signed statement in an immutable, append-only, transparent Registry.
 The last guarantee is achieved by implementing the Registry using a
 verifiable data structure (such as a Merkle Tree), and by requiring a
 TS that operates the Registry to endorse its state at the time of
 registration.

 The guarantees and techniques used in this document generalize those
 of Certificate Transparency [RFC9162], which can be re-interpreted as
 an instance of this architecture for the supply chain of X.509
 certificates. However, the range of use cases and applications in
 this document is much broader, which requires much more flexibility
 in how each TS implements and operates its Registry. Each service
 may enforce its own policy for authorizing entities to register their
 claims on the TS. Some TS may also enforce access control policies
 to limit who can audit the full Registry, or keep some information on
 the Registry encrypted. Nevertheless, it is critical to provide
 global interoperability for all TS instances as the composition and
 configuration of involved supply chain entities and their system
 components is ever changing and always in flux.

 A TS provides visibility into claims issued by supply chain entities
 and their sub-systems. These claims are called Digital Supply Chain
 Artifacts (DSCA). A TS vouches for specific and well-defined
 metadata about these DSCAs. Some metadata is selected (and signed)
 by the issuer, indicating, e.g., "who issued the DSCA" or "what type
 of DSCA is described" or "what is the DSCA version"; whereas
 additional metadata is selected (and countersigned) by the TS,
 indicating, e.g., "when was the DSCA registered in the Registry".
 The DSCA contents can be opaque to the TS, if so desired: it is the
 metadata that must always be transparent in order to warrant trust.

 Transparent claims provide a common basis for holding issuers
 accountable for the DSCA they release and (more generally) principals
 accountable for auxiliary claims they make about DSCAs. Hence,
 issuers may register new claims about their artifacts, but they
 cannot delete or alter earlier claims, or hide their claims from
 third parties such as auditors.

 Trust in the TS itself is supported both by protecting their
 implementation (using, for instance, replication, trusted hardware,
 and remote attestation of systems) and by enabling independent audits
 of the correctness and consistency of its Registry, thereby holding
 the organization accountable that operates it. Unlike CT, where
 independent auditors are responsible for enforcing the consistency of
 multiple independent instances of the same global Registry, we

Birkholz, et al. Expires 27 April 2023 [Page 4]

Internet-Draft SCITT Architecture October 2022

 require each TS to guarantee the consistency of its own Registry (for
 instance, through the use of a consensus algorithm between replicas
 of the Registry), but assume no consistency between different
 transparency services.

 The TS specified in this architecture caters to two types of
 audiences:

 1. DSCA Issuers: entities, stakeholders, and users involved in
 supply chain interactions that need to release DSCAs to a
 definable set of peers; and

 2. DSCA Consumers: entities, stakeholders, and users involved in
 supply chain interactions that need to access, validate, and
 trust DSCAs.

 DSCA Issuers rely on being discoverable and represented as the
 responsible parties for released DSCAs by the TS in a believable
 manner. Analogously, DSCA Consumers rely on verifiable
 trustworthiness assertions associated with DSCAs and their processing
 in a believable manner. If trust can be put into the operations that
 record DSCAs in a secure, append-only Registry via an online
 operation, the same trust can be put into a corresponding receipt
 that is the result of these online operations issued by the TS and
 that can be validated in offline operations.

 The TS specified in this architecture can be implemented by various
 different types of services in various types of languages provided
 via various variants of API layouts.

 The global interoperability enabled and guaranteed by the TS is
 enabled via core components (architectural constituents) that come
 with prescriptive requirements (that are typically hidden away from
 the user audience via APIs). The core components are based on the
 Concise Signing and Encryption standard specified in [RFC8152], which
 is used to sign released DSCAs and to build and maintain a Merkle
 tree that functions as the append-only Registry for DSCAs. The
 format and verification process for Registry-based transparency
 receipts are described in [I-D.birkholz-scitt-receipts].

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Birkholz, et al. Expires 27 April 2023 [Page 5]

Internet-Draft SCITT Architecture October 2022

2. Use Cases

 This section presents representative and solution-agnostic use cases
 to illustrate the scope of SCITT and the processing of Digital Supply
 Chain Artifacts.

2.1. Software Bill of Materials (SBOM)

 As the ever increasing complexity of large software projects requires
 more modularity and abstractions to manage them, keeping track of
 their full Trusted Computing Base (TCB) is becoming increasingly
 difficult. Each component may have its own set of dependencies and
 libraries. Some of these dependencies are binaries, which means
 their TCB depends not only on their source, but also on their build
 environment (compilers and tool-chains). Besides, many source and
 binary packages are distributed through various channels and
 repositories that may not be trustworthy.

 Software Bills of Materials (SBOM) help the authors, packagers,
 distributors, auditors and users of software understand its
 provenance and who may have the ability to introduce a vulnerability
 that can affect the supply chain downstream. However, the usefulness
 of SBOM in protecting end users is limited if supply chain actors
 cannot be held accountable for their contents. For instance,
 consider a package repository for an open source operating system
 distribution. The operator of this repository may decide to provide
 a malicious version of a package only to users who live in a specific
 country. They can write two equivocal SBOMs for the honest and
 backdoored versions of the package, so that nobody outside the
 affected country can discover the malicious version, but victims are
 not aware they are being targeted.

2.2. Confidential Computing

 Confidential Computing can leverage hardware-protected trusted
 execution environments (TEEs) to operate cloud services that protect
 the confidentiality of data that they process. It relies on remote
 attestation, which allows the service to prove to remote users what
 is the hash of its software, as measured and signed by the hardware.

Birkholz, et al. Expires 27 April 2023 [Page 6]

Internet-Draft SCITT Architecture October 2022

 For instance, consider a speech recognition service that implements
 machine learning inference using a deep neural network model. The
 operator of the service wants to prove to its users that the service
 preserves the user’s privacy, that is, the submitted recordings can
 only be used to detect voice commands but no other purpose (such as
 storing the recordings or detecting mentions of brand names for
 advertisement purposes). When the user connects to the TEE
 implementing the service, the TEE presents attestation evidence that
 includes a hardware certificate and a software measurement for their
 task; the user verifies this evidence before sending its recording.

 But how can users verify the software measurement for their task?
 And how can operators update their service, e.g., to mitigate
 security vulnerabilities or improve accuracy, without first
 convincing all users to update the measurements they trust?

 A supply chain that maintains a transparent record of the successive
 software releases for machine-learning models and runtimes, recording
 both their software measurements and their provenance (source code,
 build reports, audit reports,...) can provide users with the
 information they need to authorize these tasks, while holding the
 service operator accountable for the software they release for them.

2.3. Cold Chains for Seafood

 Once seafood is caught, its quality is determined -- amongst other
 criteria -- via the integrity of a cold chain that ensures a
 regulatory perspective freshness mandating a continuous storing
 temperature between 1 °C and 0 °C (or -18 °C and lower for frozen
 seafood). The temperature is recorded by cooling units adhering to
 certain compliance standards automatically. Batches of seafood can
 be split or aggregated before arriving in a shelf so that each unit
 can potentially have a potentially unique cold chain record whose
 transparency impacts the accuracy of the shelf-life associated with
 it. Especially in early links of the supply chain, Internet
 connection or sophisticated IT equipment are typically not available
 and sometimes temperature measurements are recorded manually and
 digital records are created in hindsight.

3. Terminology

 The terms defined in this section have special meaning in the context
 of Supply Chain Integrity, Transparency, and Trust throughout this
 document. When used in text, the corresponding terms are
 capitalized. To ensure readability, only a core set of terms is
 included in this section.

 Artifact: a physical or non-physical item that is moving along the

Birkholz, et al. Expires 27 April 2023 [Page 7]

Internet-Draft SCITT Architecture October 2022

 supply chain.

 Statement: any serializable information about an Artifact. To help
 interpretation of Statements, they must be tagged with a media
 type (as specified in [RFC6838]). For example, a statement may
 represent a Software Bill Of Materials (SBOM) that lists the
 ingredients of a software Artifact, or some endorsement or
 attestation about an Artifact.

 Claim: an identifiable and non-repudiable Statement about an
 Artifact made by an Issuer. In SCITT, Claims are encoded as COSE
 signed objects; the payload of the COSE structure contains the
 Statement.

 Issuer: an entity that makes Claims about Artifacts in the supply
 chain. The Issuer may be the owner or author of the Artifact, or
 an independent third party such as a reviewer or an endorser.

 Envelope: the metadata added to the Statement by the Issuer to make
 it a Claim. It contains the identity of the Issuer and other
 information to help Verifiers identify the Artifact referred in
 the Statement. A Claim binds the Envelope to the Statement. In
 COSE, the Envelope consists of protected headers.

 Feed: an identifier chosen by the Issuer for the Artifact. For
 every Issuer and Feed, the Registry on a Transparency Service
 contains a sequence of Claims about the same Artifact. In COSE,
 Feed is a dedicated header attribute in the protected header of
 the Envelope.

 Registry: the verifiable append-only data structure that stores
 Claims in a Transparency Service often referred to by the synonym
 log or ledger. SCITT supports multiple Registry and Receipt
 formats to accommodate different Transparency Service
 implementations, such as historical Merkle Trees and sparse Merkle
 Trees.

 Transparency Service: an entity that maintains and extends the
 Registry, and endorses its state. A Transparency Service is often
 referred to by its synonym Notary. A Transparency Service can be
 a complex distributed system, and SCITT requires the TS to provide
 many security guarantees about its Registry . The identity of a TS
 is captured by a public key that must be known by Verifiers in
 order to validate Receipts.

 Receipt: a Receipt is a special form of COSE countersignature for

Birkholz, et al. Expires 27 April 2023 [Page 8]

Internet-Draft SCITT Architecture October 2022

 Claims that embeds cryptographic evidence that the Claim is
 recorded in the Registry . It consists of a Registry -specific
 inclusion proof, a signature by the Transparency Service of the
 state of the Registry , and additional metadata (contained in the
 countersignature protected headers) to assist in auditing.

 Registration: the process of submitting a Claim to a Transparency
 Service, applying its registration policy, storing it in the
 Registry, producing a Receipt, and returning it to the submitter.

 Registration Policy: the pre-condition enforced by the TS before
 registering a Claim, based on its Envelope (notably the identity
 of its Issuer) and on prior claims already in the Registry.

 Transparent Claim: a Claim that is augmented with a Receipt of its
 registration. A Transparent Claim remains a valid Claim (as the
 Receipt is carried in the countersignature), and may be registered
 again in a different TS.

 Verifier: an entity that consumes Transparent Claims (a
 specialization of Claim Consumer), verifying their proofs and
 inspecting their Statements, either before using their Artifacts,
 or later to audit their provenance on the supply chain.

 Auditor: an entity that checks the correctness and consistency of
 all Claim registered by a TS (a specialization of Claim Consumer).

4. Definition of Transparency

 In this document, we use a definition of transparency built over
 abstract notions of Registry and Receipts. Existing transparency
 systems such as Certificate Transparency are instances of this
 definition.

 A Claim is an identifiable and non-repudiable Statement made by an
 Issuer. The Issuer selects additional metadata and attaches a proof
 of endorsement (in most cases, a signature) using the identity key of
 the Issuer that binds the Statement and its metadata. Claims can be
 made transparent by attaching a proof of Registration by a TS, in the
 form of a Receipt that countersigns the Claim and witnesses its
 inclusion in the Registry of a TS. By extension, we may say an
 Artifact (e.g. a firmware binary) is transparent if it comes with one
 or more Transparent Claims from its author or owner, though the
 context should make it clear what type of Claim is expected for a
 given Artifact.

Birkholz, et al. Expires 27 April 2023 [Page 9]

Internet-Draft SCITT Architecture October 2022

 Transparency does not prevent dishonest or compromised Issuers, but
 it holds them accountable: any Artifact that may be used to target a
 particular user that checks for Receipts must have been recorded in
 the tamper-proof Registry, and will be subject to scrutiny and
 auditing by other parties.

 Transparency is implemented by a Registry that provides a consistent,
 append-only, cryptographically verifiable, publicly available record
 of entries. Implementations of TS may protect their Registry using a
 combination of trusted hardware, replication and consensus protocols,
 and cryptographic evidence. A Receipt is an offline, universally-
 verifiable proof that an entry is recorded in the Registry. Receipts
 do not expire, but it is possible to append new entries that subsume
 older entries.

 Anyone with access to the Registry can independently verify its
 consistency and review the complete list of Claims registered by each
 Issuer. However, the Registry of separate Transparency Services are
 generally disjoint, though it is possible to take a Claim from one
 Registry and register it again on another (if its policy allows it),
 so the authorization of the Issuer and of the Registry by the
 Verifier of the Receipt are generally independent.

 Reputable Issuers are thus incentivized to carefully review their
 Statements before signing them into Claims. Similarly, reputable TS
 are incentivized to secure their Registry, as any inconsistency can
 easily be pinpointed by any auditor with read access to the Registry.
 Some Registry formats may also support consistency auditing through
 Receipts, that is, given two valid Receipts the TS may be asked to
 produce a cryptographic proof that they are consistent. Failure to
 produce this proof can indicate that the TS operator misbehaved.

5. Architecture Overview

Birkholz, et al. Expires 27 April 2023 [Page 10]

Internet-Draft SCITT Architecture October 2022

 .----------.
 | Artifact |
 ’----+-----’
 v
 .----+----. .----------.
 Issuer --> | Statement || Envelope |
 ’----+----’ ’-----+----’
 | | +------------------+
 ’----. .----’ | DID Key Manifest |
 | | (decentralized) |
 v +---+----------+---+
 .--+--. Sign Claim | |
 | Claim +<------------’ |
 ’--+--’ |
 | +--------------+ |
 .-’ ’---------->+ Transparency | |
 | .-------. | | |
 Transparency --> | | Receipt |<--+ Registry | |
 Service | ’---+---’ +-------+------+ |
 ’-. .-’ | |
 | | |
 v | |
 .-+-------+-. | |
 | Transparent | | |
 | Claim | | |
 ’-----+-----’ | |
 | | |
 |’------. .------)-------’
 | | | |
 | v v |
 | .----+---+-----. |
 Verifier --> | / Verify Claim / |
 | ’--------------’ |
 v v
 .--------+---------. .-------+---------.
 Auditor --> / Collect Receipts / / Replay Registry /
 ’------------------’ ’-----------------’

Birkholz, et al. Expires 27 April 2023 [Page 11]

Internet-Draft SCITT Architecture October 2022

 The SCITT architecture consists of a very loose federation of
 Transparency Services, and a set of common formats and protocols for
 issuing, registering and auditing Claims. In order to accommodate as
 many TS implementations as possible, this document only specifies the
 format of Claims (which must be used by all Issuers) and a very thin
 wrapper format for Receipts, which specifies the TS identity and the
 Registry algorithm. Most of the details of the Receipt’s contents
 are specific to the Registry algorithm. The
 [I-D.birkholz-scitt-receipts] document defines two initial Registry
 algorithms (for historical and sparse Merkle Trees), but other
 Registry formats (such as blockchains, or hybrid historical and
 indexed Merkle Trees) may be proposed later.

 In this section, we describe at a high level the three main roles and
 associated processes in SCITT: Issuers and the Claim issuance
 process, transparency Registry and the Claim Registration process,
 and Verifiers and the Receipt validation process.

5.1. Claim Issuance and Registration

5.1.1. Issuer Identity

 Before an Issuer is able to produce Claims, it must first create its
 decentralized identifier (https://www.w3.org/TR/did-core) (also known
 as a DID). A DID can be _resolved_ into a _key manifest_ (a list of
 public keys indexed by a _key identifier_) using many different DID
 methods.

 Issuers MAY choose the DID method they prefer, but with no guarantee
 that all TS will be able to register their Claim. To facilitate
 interoperability, all Transparency Service implementations SHOULD
 support the did:web method from [https://w3c-ccg.github.io/did-
 method-web/]. For instance, if the Issuer publishes its manifest at
 https://sample.issuer/user/alice/did.json, the DID of the Issuer is
 did:web:sample.issuer:user:alice.

 Issuers SHOULD use consistent decentralized identifiers for all their
 Artifacts, to simplify authorization by Verifiers and auditing. They
 MAY update their DID manifest, for instance to refresh their signing
 keys or algorithms, but they SHOULD NOT remove or change any prior
 keys unless they intend to revoke all Claims issued with those keys.
 This DID appears in the Issuer header of the Claim’s Envelope, while
 the version of the key from the manifest used to sign the Claim is
 written in the kid header.

Birkholz, et al. Expires 27 April 2023 [Page 12]

Internet-Draft SCITT Architecture October 2022

5.1.2. Naming Artifacts

 Many Issuers issue Claims about different Artifacts under the same
 DID, so it is important for everyone to be able to immediately
 recognize by looking at the Envelope of a Claim what Artifact it is
 referring to. This information is stored in the Feed header of the
 Envelope. Issuers MAY use different signing keys (identified by kid
 in the resolved key manifest) for different Artifacts, or sign all
 Claims under the same key.

5.1.3. Claim Metadata

 Besides Issuer, Feed and kid, the only other mandatory metadata in
 the Claim is the type of the Payload, indicated in the cty Envelope
 header. However, this set of mandatory metadata is not sufficient to
 express many important Registration policies. For example, a
 Registry may only allow a Claim to be registered if it was signed
 recently. While the Issuer is free to add any information in the
 payload of the Claim, the TS (and most of its auditor) can only be
 expected to interpret information in the Envelope.

 Such metadata, meant to be interpreted by the TS during Registration
 policy evaluation, should be added to the reg_info header. While the
 header MUST be present in all Claims, its contents consist of a map
 of named attributes. Some attributes (such as the Issuer’s
 timestamp) are standardized with a defined type, to help uniformize
 their semantics across TS. Others are completely customizable and
 may have arbitrary types. In any case, all attributes are optional
 so the map MAY be empty.

5.2. Transparency Service (TS)

 The role of TS can be decomposed into several major functions. The
 most important is maintaining a Registry, the verifiable data
 structure that records Claims, and enforcing a Registration policy.
 It also maintains a service key, which is used to endorse the state
 of the Registry in Receipts. All TS MUST expose standard endpoints
 for Registration of Claims and Receipt issuance, which is described
 in Section 8.1. Each TS also defines its Registration policy, which
 MUST apply to all entries in the Registry.

 The combination of Registry, identity, Registration policy
 evaluation, and Registration endpoint constitute the trusted part of
 the TS. Each of these components SHOULD be carefully protected
 against both external attacks and internal misbehavior by some or all
 of the operators of the TS. For instance, the code for policy
 evaluation, Registry extension and endorsement may be protected by
 running in a TEE; the Registry may be replicated and a consensus

Birkholz, et al. Expires 27 April 2023 [Page 13]

Internet-Draft SCITT Architecture October 2022

 algorithm such as Practical Byzantine Fault Tolerance (pBFT [PBFT])
 may be used to protect against malicious or vulnerable replicas;
 threshold signatures may be use to protect the service key, etc.

 Beyond the trusted components, Transparency Services may operate
 additional endpoints for auditing, for instance to query for the
 history of Claims made by a given Issuer and Feed. Implementations
 of TS SHOULD avoid using the service identity and extending the
 Registry in auditing endpoints; as much as practical, the Registry
 SHOULD contain enough evidence to re-construct verifiable proofs that
 the results returned by the auditing endpoint are consistent with a
 given state of the Registry.

5.2.1. Service Identity, Remote Attestation, and Keying

 Every TS MUST have a public service identity, associated with public/
 private key pairs for signing on behalf of the service. In
 particular, this identity must be known by Verifiers when validating
 a Receipt

 This identity should be stable for the lifetime of the service, so
 that all Receipts remain valid and consistent. The TS operator MAY
 use a distributed identifier as their public service identity if they
 wish to rotate their keys, if the Registry algorithm they use for
 their Receipt supports it. Other types of cryptographic identities,
 such as parameters for non-interactive zero-knowledge proof systems,
 may also be used in the future.

 The TS SHOULD provide evidence that it is securely implemented and
 operated, enabling remote authentication of the hardware platforms
 and/or software TCB that run the TS. This additional evidence SHOULD
 be recorded in the Registry and presented on demand to Verifiers and
 auditors.

 For example, consider a TS implemented using a set of replicas, each
 running within its own hardware-protected trusted execution
 environments (TEEs). Each replica SHOULD provide a recent
 attestation report for its TEE, binding their hardware platform to
 the software that runs the Transparency Service, the long-term public
 key of the service, and the key used by the replica for signing
 Receipts. This attestation evidence SHOULD be supplemented with
 transparency Receipts for the software and configuration of the
 service, as measured in its attestation report.

Birkholz, et al. Expires 27 April 2023 [Page 14]

Internet-Draft SCITT Architecture October 2022

5.2.2. Registration Policies

 A TS that accepts to register any valid claim offered by an issuer
 would end up providing only limited value to verifiers. In
 consequence, a baseline transparency guarantee policing the
 registration of claims is required to ensure completeness of audit,
 which can help detect equivocation. Most advanced SCITT scenarios
 rely on the TS performing additional domain-specific checks before a
 claim is accepted: TS may only allow trusted authenticated users to
 register claims, TS may try to check that a new claim is consistent
 with previous claims from the same issuers or that claims are
 registered in the correct order and cannot be re-played; some TS may
 even interpret and validate the payload of claims.

 In general, registration policies are applied at the discretion of
 the TS, and verifiers use receipts as witnesses that confirm that the
 registration policy of the TS was satisfied at the time claim
 registration. TS implementations SHOULD make their full registration
 policy public and auditable, e.g. by recording stateful policy inputs
 at evaluation time in the registry to ensure that policy can be
 independently validated later. From an interoperability point of
 view, the policy that was applied by the TS is opaque to the
 verifier, who is forced to trust the associated registration policy.
 If the policy of the TS evolves over time, or is different across
 issuers, the guarantee derived from receipt validation may not be
 uniform across all claims over time.

 To help verifiers interpret the semantics of claim registration,
 SCITT defines a standard mechanism for signalling in the claim itself
 which policies have been applied by the TS from a defined set of
 registration policies with standardized semantics. Each policy that
 is expected to be enforced by the TS is represented by an entry in
 the registration policy info map (reg_info) in the envelope. The key
 of the map corresponds to the name of the policy, while its value
 (including its type) is policy-specific. For instance, the
 register_by policy defines the maximum timestamp by which a claim can
 be registered, hence the associated value contains an unsigned
 integer.

 While this design ensures that all verifiers get the same guarantee
 regardless of where a claim is registered, its main downside is that
 it requires the issuer to include the necessary policies in the
 envelope when the claim is signed. Furthermore, it makes it
 impossible to register the same claim on two different TS if their
 required registration policies are incompatible.

 Editor’s note

Birkholz, et al. Expires 27 April 2023 [Page 15]

Internet-Draft SCITT Architecture October 2022

 The technical design for signalling and verifying registration
 policies is a work in progress. An alternative design would be to
 include the registration policies in the receipt/countersignature
 rather than in the envelope. This improves the portability of
 claims but requires the verifier to be more aware of the
 particular policies at the TS where the claim is registered.

5.2.3. Registry Security Requirements

 There are many different candidate verifiable data structures that
 may be used to implement the Registry, such as chronological Merkle
 Trees, sparse/indexed Merkle Trees, full blockchains, and many other
 variants. We only require the Registry to support concise Receipts
 (i.e. whose size grows at most logarithmically in the number of
 entries in the Registry). This does not necessarily rule out
 blockchains as a Registry, but may necessitate advanced Receipt
 schemes that use arguments of knowledge and other verifiable
 computing techniques.

 Since the details of how to verify a Receipt are specific to the data
 structure, we do not specify any particular Registry format in this
 document. Instead, we propose two initial formats for Registry in
 [I-D.birkholz-scitt-receipts] using historical and sparse Merkle
 Trees. Beyond the format of Receipts, we require generic properties
 that should be satisfied by the components in the TS that have the
 ability to write to the Registry.

5.2.3.1. Finality

 The Registry is append-only: once a Claim is registered, it cannot be
 modified, deleted, or moved. In particular, once a Receipt is
 returned for a given Claim, the Claim and any preceding entry in the
 Registry become immutable, and the Receipt provides universally-
 verifiable evidence of this property.

5.2.3.2. Consistency

 There is no fork in the Registry: everyone with access to its
 contents sees the same sequence of entries, and can check its
 consistency with any Receipts they have collected. TS
 implementations SHOULD provide a mechanism to verify that the state
 of the Registry encoded in an old Receipt is consistent with the
 current Registry state.

5.2.3.3. Replayability and Auditing

 Everyone with access to the Registry can check the correctness of its
 contents. In particular,

Birkholz, et al. Expires 27 April 2023 [Page 16]

Internet-Draft SCITT Architecture October 2022

 * the TS defines and enforces deterministic Registration policies
 that can be re-evaluated based solely on the contents of the
 Registry at the time of registraton, and must then yield the same
 result.

 * The ordering of entries, their cryptographic contents, and the
 Registry governance may be non-deterministic, but they must be
 verifiable.

 * The TS SHOULD store evidence about the resolution of distributed
 identifiers into manifests.

 * The TS MAY additionally support verifiability of client
 authentication and access control.

5.2.3.4. Governance and Bootstrapping

 The TS needs to support governance, with well-defined procedures for
 allocating resources to operate the Registry (e.g., for provisioning
 trusted hardware and registering their attestation materials in the
 Registry) and for updating its code (e.g., relying on Transparent
 Claims about code updates, secured on the Registry itself, or on some
 auxiliary TS).

 Governance procedures, their auditing, and their transparency are
 implementation specific. The TS SHOULD document them.

 * Governance may be based on a consortium of members that are
 jointly responsible for the TS, or automated based on the contents
 of an auxiliary governance TS.

 * Governance typically involves additional records in the Registry
 to enable its auditing. Hence, the Registry may contain both
 Transparent Claims and governance entries.

 * Issuers, Verifiers, and third-party auditors may review the TS
 governance before trusting the service, or on a regular basis.

5.3. Verifying Transparent Claims

 For a given Artifact, Verifiers take as trusted inputs:

 1. the distributed identifier of the Issuer (or its resolved key
 manifest),

 2. the expected name of the Artifact (i.e. the Feed),

 3. the list of service identities of trusted TS.

Birkholz, et al. Expires 27 April 2023 [Page 17]

Internet-Draft SCITT Architecture October 2022

 When presented with a Transparent Claim for the Artifact, they verify
 its Issuer identity, signature, and Receipt. They may additionally
 apply a validation policy based on the protected headers present both
 in the Envelope or in the countersignature and the Statement itself,
 which may include security-critical Artifact-specific details.

 Some Verifiers may systematically resolve the Issuer DID to fetch
 their latest DID document. This strictly enforces the revocation of
 compromised keys: once the Issuer has updated its document to remove
 a key identifier, all Claims signed with this kid will be rejected.
 However, others may delegate DID resolution to a trusted third party
 and/or cache its results.

 Some Verifiers may decide to skip the DID-based signature
 verification, relying on the TS’s Registration policy and the
 scrutiny of other Verifiers. Although this weakens their guarantees
 against key revocation, or against a corrupt TS, they can still keep
 the Receipt and blame the Issuer or the TS at a later point.

6. Claim Issuance, Registration, and Verification

 This section details the interoperability requirements for
 implementers of Claim issuance and validation libraries, and of
 Transparency Services.

6.1. Envelope and Claim Format

 The formats of Claims and Receipts are based on CBOR Object Signing
 and Encryption (COSE). The choice of CBOR is a trade-off between
 safety (in particular, non-malleability: each Claim has a unique
 serialization), ease of processing and availability of
 implementations.

 At a high-level that is the context of this architecture, a Claim is
 a COSE single-signed object (i.e. COSE_Sign1) that contains the
 correct set of protected headers. Although Issuers and relays may
 attach unprotected headers to Claims, Transparency Services and
 Verifiers MUST NOT rely on the presence or value of additional
 unprotected headers in Claims during Registration and validation.

 All Claims MUST include the following protected headers:

 * algorithm (label: 1): Asymmetric signature algorithm used by the
 Claim Issuer, as an integer, for example -35 for ECDSA with SHA-
 384, see COSE Algorithms registry
 (https://www.iana.org/assignments/cose/cose.xhtml);

Birkholz, et al. Expires 27 April 2023 [Page 18]

Internet-Draft SCITT Architecture October 2022

 * Issuer (label: TBD, temporary: 391): DID (Decentralized
 Identifier, see W3C Candidate Recommendation
 (https://www.w3.org/TR/did-core/)) of the signer, as a string, for
 example did:web:example.com;

 * Feed (label: TBD, temporary: 392): the Issuer’s name for the
 Artifact, as a string;

 * payload type (label: 3): Media type of payload as a string, for
 example application/spdx+json

 * Registration policy info (label: TBD, temporary: 393): a map of
 additional attributes to help enforce Registration policies;

 * Key ID (label: 4): Key ID, as a bytestring.

 Additionally, Claims MAY carry the following unprotected headers:

 * Receipts (label: TBD, temporary: 394): Array of Receipts, defined
 in [I-D.birkholz-scitt-receipts]

 In CDDL [RFC8610] notation, the Envelope is defined as follows:

Birkholz, et al. Expires 27 April 2023 [Page 19]

Internet-Draft SCITT Architecture October 2022

 SCITT_Envelope = COSE_Sign1_Tagged

 COSE_Sign1_Tagged = #6.18(COSE_Sign1)

 COSE_Sign1 = [
 protected : bstr .cbor Protected_Header,
 unprotected : Unprotected_Header,
 payload : bstr,
 signature : bstr
]

 Reg_Info = {
 ? "register_by": uint,
 ? "sequence_no": uint,
 ? "issuance_ts": uint,
 * tstr => any
 }

 ; All protected headers are mandatory, to protect against faulty implementatio
ns of COSE
 ; that may accidentally read a missing protected header from the unprotected h
eaders.
 Protected_Header = {
 1 => int ; algorithm identifier
 3 => tstr ; payload type
 4 => bstr ; Key ID
 ; TBD, Labels are temporary
 391 => tstr ; DID of Issuer
 392 => tstr ; Feed
 393 => Reg_Info ; Registration policy info
 }

 Unprotected_Header = {
 ; TBD, Labels are temporary
 ? 394 => [+ SCITT_Receipt]
 }

6.2. Claim Issuance

 There are many types of Statements (such as SBOMs, malware scans,
 audit reports, policy definitions) that Issuers may want to turn into
 Claims. The Issuer must first decide on a suitable format to
 serialize the Statement, such as:

 * JSON-SPDX

 * CBOR-SPDX

 * SWID

Birkholz, et al. Expires 27 April 2023 [Page 20]

Internet-Draft SCITT Architecture October 2022

 * CoSWID

 * CycloneDX

 * in-toto

 * SLSA

 Once the Statement is serialized with the correct content type, the
 Issuer should fill in the attributes for the Registration policy
 information header. From the Issuer’s perspective, using attributes
 from named policies ensures that the Claim may only be registered on
 Transparency Services that implement the associated policy. For
 instance, if a Claim is frequently updated, and it is important for
 Verifiers to always consider the latest version, Issuers SHOULD use
 the sequence_no or issuer_ts attributes.

 Once all the Envelope headers are set, the Issuer MAY use a standard
 COSE implementation to produce the serialized Claim (the SCITT tag of
 COSE_Sign1_Tagged is outside the scope of COSE, and used to indicate
 that a signed object is a Claim).

6.3. Standard registration policies

 Editor’s note

 The technical design for signalling and verifying registration
 policies is a work in progress. We expect that once the formats
 and semantics of the registration policy headers are finalized,
 standardized policies may be moved to a separate draft. For now,
 we inline some significant policies to illustrate the most common
 use cases.

 TS implementations MUST indicate their support for registration
 policies and MUST check that all the policies indicated as defined in
 the reg_info map are supported and are satisfied before a claim can
 be registered. Any unsupported claims MUST be indicated separately
 and corresponding unknown policy entries in the map of a claim MUST
 be rejected. This is to ensure that all verifiers get the same
 guarantee out of the registration policies regardless of where it is
 registered.

Birkholz, et al. Expires 27 April 2023 [Page 21]

Internet-Draft SCITT Architecture October 2022

 +=============+==============+==================================+
 | Policy Name | Required | Implementation |
 | | attributes | |
 +=============+==============+==================================+
 | TimeLimited | register_by: | Returns true if now () < |
 | | uint | register_by at registration |
 | | | time. The ledger MUST store the |
 | | | ledger time at registration |
 | | | along with the claim, and SHOULD |
 | | | indicate it in receipts |
 +-------------+--------------+----------------------------------+
 | Sequential | sequence_no: | First, lookup in the ledger for |
 | | uint | claims with the same issuer and |
 | | | feed. If at least one is found, |
 | | | returns true if and only if the |
 | | | sequence_no of the new claim is |
 | | | the highest sequence_no in the |
 | | | existing claims incremented by |
 | | | one. Otherwise, returns true if |
 | | | and only if sequence_no = 0. |
 +-------------+--------------+----------------------------------+
 | Temporal | issuance_ts: | Returns true if and only if |
 | | uint | there is no claim in the ledger |
 | | | with the same issuer and feed |
 | | | with a greater issuance_ts |
 +-------------+--------------+----------------------------------+
 | NoReplay | None | Returns true if and only if the |
 | | | claim doesn’t already appear in |
 | | | the ledger |
 +-------------+--------------+----------------------------------+

 Table 1: An Initial Set of Named Policies

6.4. Registering Signed Claims

 The same Claim may be independently registered in multiple TS. To
 register a Claim, the service performs the following steps:

 1. Client authentication. This is implementation-specific, and MAY
 be unrelated to the Issuer identity. Claims may be registered by
 a different party than their Issuer.

 2. Issuer identification. The TS MUST store evidence of the DID
 resolution for the Issuer protected header of the Envelope and
 the resolved key manifest at the time of Registration for
 auditing. This MAY require that the service resolve the Issuer
 DID and record the resulting document, or rely on a cache of
 recent resolutions.

Birkholz, et al. Expires 27 April 2023 [Page 22]

Internet-Draft SCITT Architecture October 2022

 3. Envelope signature verification, as described in COSE signature,
 using the signature algorithm and verification key of the Issuer
 DID document.

 4. Envelope validation. The service MUST check that the Envelope
 has a payload and the protected headers listed above. The
 service MAY additionally verify the payload format and content.

 5. Apply Registration policy: for named policies, the TS should
 check that the required Registration info attributes are present
 in the Envelope and apply the check described in Table 1. A TS
 MUST reject Claims that contain an attribute used for a named
 policy that is not enforced by the service. Custom Claims are
 evaluated given the current Registry state and the entire
 Envelope, and MAY use information contained in the attributes of
 named policies.

 6. Commit the new Claim to the Registry

 7. Sign and return the Receipt.

 The last two steps MAY be shared between a batch of Claims recorded
 in the Registry.

 The service MUST ensure that the Claim is committed before releasing
 its Receipt, so that it can always back up the Receipt by releasing
 the corresponding entry in the Registry. Conversely, the service MAY
 re-issue Receipts for the Registry content, for instance after a
 transient fault during Claim Registration.

6.5. Validation of Transparent Claims

 This section provides additional implementation considerations, the
 high-level validation algorithm is described in Section 5.3, with the
 Registry-specific details of checking Receipts are covered in
 [I-D.birkholz-scitt-receipts].

 Before checking a Claim, the Verifier must be configured with one or
 more identities of trusted Transparency Services. If more than one
 service is configured, the Verifier MUST return which service the
 Claim is registered on.

Birkholz, et al. Expires 27 April 2023 [Page 23]

Internet-Draft SCITT Architecture October 2022

 In some scenarios, the Verifier already expects a specific Issuer and
 Feed for the Claim, while in other cases they are not known in
 advance and can be an output of validation. Verifiers SHOULD offer a
 configuration to decide if the Issuer’s signature should be locally
 verified (which may require a DID resolution, and may fail if the
 manifest is not available or if the key is revoked), or if it should
 trust the validation done by the TS during Registration.

 Some Verifiers MAY decide to locally re-apply some or all of the
 Registration policies if they have limited trust in the TS. In
 addition, Verifiers MAY apply arbitrary validation policies after the
 signature and Receipt have been checked. Such policies may use as
 input all information in the Envelope, the Receipt, and the payload,
 as well as any local state.

 Verifiers SHOULD offer options to store or share Receipts in case
 they are needed to audit the TS in case of a dispute.

7. Federation

 Editor’s note: This section needs work.

 Multiple, independently-operated transparency services can help
 secure distributed supply chains, without the need for a single,
 centralized service trusted by all parties. For example, multiple
 SCITT instances may be governed and operated by different
 organizations that do not trust one another.

 This may involve registering the same Claims at different
 transparency services, each with their own purpose and registration
 policy. This may also involve attaching multiple Receipts to the
 same Claims, each Receipt endorsing the Issuer signature and a subset
 of prior Receipts, and each TS verifying prior Receipts as part of
 their registration policy.

 For example, a supplier TS may provide a complete, authoritative
 Registry for some kind of Claims, whereas a consumer TS may collect
 different kinds of Claims to ensure complete auditing for a specific
 use case, and possibly require additional reviews before registering
 some of these claims.

8. Transparency Service API

 Editor’s Note: This may be moved to appendix.

Birkholz, et al. Expires 27 April 2023 [Page 24]

Internet-Draft SCITT Architecture October 2022

8.1. Messages

8.1.1. Register Signed Claims

8.1.1.1. Request

 POST <Base URL>/entries

 Body: SCITT COSE_Sign1 message

8.1.1.2. Response

 One of the following:

 * HTTP Status 201 - Registration was tentatively successful pending
 service consensus.

 * HTTP Status 400 - Registration was unsuccessful.

 - Error code AwaitingDIDResolutionTryLater

 - Error code InvalidInput

 [TODO] Use 5xx for AwaitingDIDResolutionTryLater

 The 201 response contains the x-ms-ccf-transaction-id HTTP header
 which can be used to retrieve the Registration Receipt with the given
 transaction ID. [TODO] this has to be made generic

 [TODO] probably a bad idea to define a new header, or is it ok? can
 we register a new one? https://www.iana.org/assignments/http-fields/
 http-fields.xhtml

 The 400 response has a Content-Type: application/json header and a
 body containing details about the error:

 json { "error": { "code": "<error code>", "message": "<message>" } }

 AwaitingDIDResolutionTryLater means the service does not have an up-
 to-date DID document of the DID referenced in the Signed Claims but
 is performing or will perform a DID resolution after which the client
 may retry the request. The response may contain the HTTP header
 Retry-After to inform the client about the expected wait time.

 InvalidInput means either the Signed Claims message is syntactically
 malformed, violates the signing profile (e.g. signing algorithm), or
 has an invalid signature relative to the currently resolved DID
 document.

Birkholz, et al. Expires 27 April 2023 [Page 25]

Internet-Draft SCITT Architecture October 2022

8.1.2. Retrieve Registration Receipt

8.1.2.1. Request

 GET <Base URL>/entries/<Transaction ID>/receipt

8.1.2.2. Response

 One of the following:

 * HTTP Status 200 - Registration was successful and the Receipt is
 returned.

 * HTTP Status 400 - Transaction exists but does not correspond to a
 Registration Request.

 - Error code TransactionMismatch

 * HTTP Status 404 - Transaction is pending, unknown, or invalid.

 - Error code TransactionPendingOrUnknown

 - Error code TransactionInvalid

 The 200 response contains the SCITT_Receipt in the body.

 The 400 and 404 responses return the error details as described
 earlier.

 The retrieved Receipt may be embedded in the corresponding COSE_Sign1
 document in the unprotected header, see TBD.

 [TODO] There’s also the GET <Base URL>/entries/<Transaction ID>
 endpoint which returns the submitted COSE_Sign1 with the Receipt
 already embedded. Is this useful?

9. Privacy Considerations

 Unless advertised by the TS, every Issuer should treat its Claims as
 public. In particular, their Envelope and Statement should not carry
 any private information in plaintext.

Birkholz, et al. Expires 27 April 2023 [Page 26]

Internet-Draft SCITT Architecture October 2022

10. Security Considerations

 On its own, verifying a Transparent Claim does not guarantee that its
 Envelope or contents are trustworthy---just that they have been
 signed by the apparent Issuer and counter-signed by the TS. If the
 Verifier trusts the Issuer, it can infer that the Claim was issued
 with this Envelope and contents, which may be interpreted as the
 Issuer saying the Artifact is fit for its intended purpose. If the
 Verifier trusts the TS, it can independently infer that the Claim
 passed the TS Registration policy and that has been persisted in the
 Registry. Unless advertised in the TS Registration policy, the
 Verifier should not assume that the ordering of Transparent Claims in
 the Registry matches the ordering of their issuance.

 Similarly, the fact that an Issuer can be held accountable for its
 Transparent Claims does not on its own provide any mitigation or
 remediation mechanism in case one of these Claims turned out to be
 misleading or malicious---just that signed evidence will be available
 to support them.

 Issuers SHOULD ensure that the Statements in their Claims are correct
 and unambiguous, for example by avoiding ill-defined or ambiguous
 formats that may cause Verifiers to interpret the Claim as valid for
 some other purpose.

 Issuers and Transparency Services SHOULD carefully protect their
 private signing keys and avoid these keys for any purpose not
 described in this architecture. In case key re-use is unavoidable,
 they MUST NOT sign any other message that may be verified as an
 Envelope.

10.1. Threat Model

 We provide a generic threat model for SCITT, describing its residual
 security properties when some of its actors (identity providers,
 Issuers, TS, and Auditors) are corrupt or compromised.

 This model may need to be refined to account for specific supply
 chains and use cases.

10.1.1. Claim authentication and transparency.

 SCITT primarily supports evidence of Claim integrity, both from the
 Issuer (authentication) and from the TS (transparency). These
 guarantees are meant to hold for the long term, possibly decades.

 We conservatively suppose that some issuers and some TS will be
 corrupt.

Birkholz, et al. Expires 27 April 2023 [Page 27]

Internet-Draft SCITT Architecture October 2022

 SCITT entities explicitly trust one another on the basis of their
 long-term identity, which maps to shorter-lived cryptographic
 credentials. Hence, a Verifier would usually validate a transparent
 signed Claim from a given Issuer, registered at a given TS (both
 identified in the Verifier’s local authorization policy) and would
 not depend on any other Issuer or TS.

 We cannot stop authorized supply chain actors from making false
 claims (either by mistake or by corruption) but we can make them
 accountable by ensuring their Claims are systematically registered at
 a trustworthy TS.

 Similarly, we aim to provide strong residual guarantees against a
 faulty/corrupt TS. We cannot stop a TS from registering Claims that
 do not meet its stated Registration Policy, or to issue Receipts that
 are not consistent with their append-only Registry, but we can hold
 it accountable and guarantee that it will be blamed by any Auditor
 that replays their Registry against any contested Receipt. Note that
 SCITT does not require trust in a single centralized TS: different
 actors may rely on different TS, each registering a subset of claims
 subject to their own policy.

 In both cases, SCITT provides generic, universally-verifiable
 cryptographic evidence to individually blame the Issuer or the TS.
 This enables valid actors to detect and disambiguate malicious actors
 who make contradictory Claims to different entities (Verifiers,
 Auditors, Issuers). On the other hand, their liability and the
 resulting damage to their reputation are application specific, and
 out of scope for SCITT.

 Verifiers and Auditors need not be trusted by other actors. In
 particular, they cannot "frame" an Issuer or a TS for claims they did
 not issue or register.

 Append-only log

 If a TS is honest, then a transparent signed Claim with a correct
 Receipt of registration at a given position ensures that the signed
 claim passed its Registration Policy and was recorded at that
 position in its Registry.

 Conversely, a corrupt TS may 1. refuse or delay the registration of
 Claims; 2. register Claims that do not pass its Registration Policy
 (e.g. Claims with Issuer identities and signatures that do not
 verify.) 3. issue verifiable Receipts for Claims that do not match
 its Registry; 4. refuse access to its Registry (e.g. to Auditors,
 possibly after storage loss)

Birkholz, et al. Expires 27 April 2023 [Page 28]

Internet-Draft SCITT Architecture October 2022

 An Auditor granted (partial) access to the Registry and to a
 collection of disputed Receipts will be able to replay it, detect any
 invalid Registration (2) or incorrect receipt in this collection (3),
 and blame the TS for them. This ensures any Verifier that trust at
 least one such Auditor that (2,3) will be blamed to the TS.

 Due to the operational challenge of maintaining a globally consistent
 append-only Registry, some TS may provide limited support for
 historical queries on the Claims they have registered, and accept the
 risk of being blamed for inconsistent Registration or Issuer
 equivocation.

 Verifier and Auditors may also witness (1,4) but may not be able to
 collect verifiable evidence for it.

 Availability of Transparent Signed Claims

 Networking and Storage are trusted only for availability.

 Auditing may involve access to data beyond what is persisted in the
 TS log. For example, the registered TS may include only the hash of
 a detailed SBOM, which may limit the scope of auditing.

 Resistance to denial-of-service is implementation specific.

 Actors should independently keep their own record of the Claims they
 issue, endorse, verify, or audit.

10.1.2. Confidentiality and privacy.

 The network is untrusted. All contents exchanged between actors is
 protected using secure authenticated channels (TLS) but, as usual,
 this may not exclude network traffic analysis.

 Claims and their registration

 The TS is trusted with the confidentiality of the claims presented
 for registration. Some TS may publish every claim in their logs, to
 facilitate their dissemination and auditing. Others may just return
 receipts to the client that present claims for registration, and
 disclose the ledger only to auditors trusted with the confidentiality
 of its contents.

 A collection of transparent Claims leaks no information about the
 contents of other Claims registered at the TS.

Birkholz, et al. Expires 27 April 2023 [Page 29]

Internet-Draft SCITT Architecture October 2022

 Nonetheless, Issuers should carefully review the inclusion of
 private/confidential materials in their Claims; they may for instance
 remove any PII, or include instead opaque cryptographic commitments,
 such as hashes.

 Queries to the Registry

 The confidentiality of queries is implementation-specific, and
 generally not guaranteed. For example, while offline Claim
 verification is private, a TS may monitor which of its Claims are
 being verified from lookups to ensure their freshness.

10.1.3. Cryptographic Assumptions

 We rely on standard cryptographic security for signing schemes (EUF-
 CMA: for a given key, given the public key and any number of signed
 messages, the attacker cannot forge a valid signature for any other
 message) and for receipts schemes (log collision-resistance: for a
 given commitment such as a Merkle-tree root, there is a unique log
 such that any valid path authenticates a claim in this log.)

 SCITT supports cryptographic agility: the actors depend only on the
 subset of signing and receipt schemes they trust. This enables the
 gradual transition to stronger algorithms, including e.g. post-
 quantum signature algorithms.

10.1.4. TS Clients

 Trust in clients that submit Claims for registration is
 implementation-specific. Hence, an attacker may attempt to register
 any Claim it has obtained, at any TS that accepts them, possibly
 multiple times and out of order. This may be mitigated by a TS that
 enforces restrictive access control and registration policies.

10.1.5. Identity

 The identity resolution mechanism is trusted to associate long-term
 identifiers with their public signature-verification keys. (The TS
 and other parties may record identity-resolution evidence to
 facilitate its auditing.)

 If one of the credentials of an Issuer gets compromised, SCITT still
 guarantee the authenticity of all claims signed with this credential
 that have been registered on a TS before the compromise. It is up to
 the Issuer to notify TS of credential revocation to stop Verifiers
 from accepting Claims signed with compromised credentials. [See the
 thread of revocation for additional details.]

Birkholz, et al. Expires 27 April 2023 [Page 30]

Internet-Draft SCITT Architecture October 2022

 The confidentiality of any identity lookup during Claim Registration
 or Claim Verification is out of scope.

11. IANA Considerations

 See Body Section 4.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC9162] Laurie, B., Messeri, E., and R. Stradling, "Certificate
 Transparency Version 2.0", RFC 9162, DOI 10.17487/RFC9162,
 December 2021, <https://www.rfc-editor.org/info/rfc9162>.

12.2. Informative References

 [I-D.birkholz-scitt-receipts]
 Birkholz, H., Riechert, M., Delignat-Lavaud, A., and C.
 Fournet, "Countersigning COSE Envelopes in Transparency
 Services", Work in Progress, Internet-Draft, draft-
 birkholz-scitt-receipts-01, 5 September 2022,
 <https://www.ietf.org/archive/id/draft-birkholz-scitt-
 receipts-01.txt>.

Birkholz, et al. Expires 27 April 2023 [Page 31]

Internet-Draft SCITT Architecture October 2022

 [PBFT] Castro, M. and B. Liskov, "Practical byzantine fault
 tolerance and proactive recovery", ACM Transactions on
 Computer Systems, Volume 20, Issue 4 , November 2002,
 <https://doi:10.1145/571637.571640>.

Appendix A. Attic

 Not ready to throw these texts into the trash bin yet.

Authors’ Addresses

 Henk Birkholz
 Fraunhofer SIT
 Rheinstrasse 75
 64295 Darmstadt
 Germany
 Email: henk.birkholz@sit.fraunhofer.de

 Antoine Delignat-Lavaud
 Microsoft Research
 21 Station Road
 Cambridge
 CB1 2FB
 United Kingdom
 Email: antdl@microsoft.com

 Cedric Fournet
 Microsoft Research
 21 Station Road
 Cambridge
 CB1 2FB
 United Kingdom
 Email: fournet@microsoft.com

 Yogesh Deshpande
 ARM
 110 Fulbourn Road
 Cambridge
 CB1 9NJ
 United Kingdom
 Email: yogesh.deshpande@arm.com

Birkholz, et al. Expires 27 April 2023 [Page 32]

