
Network Working Group M. Petit-Huguenin
Internet-Draft Impedance Mismatch LLC
Intended status: Experimental 7 August 2022
Expires: 8 February 2023

 The Computerate Specifying Paradigm
 draft-petithuguenin-computerate-specifying-17

Abstract

 This document specifies a paradigm named Computerate Specifying,
 designed to simultaneously document and formally specify
 communication protocols. This paradigm can be applied to any
 document produced by any Standard Developing Organization (SDO), but
 this document targets specifically documents produced by the IETF.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 8 February 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Petit-Huguenin Expires 8 February 2023 [Page 1]

Internet-Draft Computerate Specifying August 2022

Table of Contents

 1. Introduction . 5
 2. Overview . 6
 3. Terminology . 8
 4. Basic Specification Tutorial 9
 5. Verified Specification Tutorial 13
 5.1. Evidence-Based Answers 13
 5.1.1. Encoding Questions 15
 5.1.1.1. Any Value of a Type is Evidence of Yes 15
 5.1.1.2. Function Type As Implication 16
 5.1.1.3. Polymorphism 18
 5.1.1.4. Empty Type as No 18
 5.1.1.5. Sloppy Questions 20
 5.1.1.6. Product Type 21
 5.1.1.7. Sum Type . 21
 5.1.1.8. Inductive Type 22
 5.1.1.9. Pi Type . 22
 5.1.1.10. Sigma Type 22
 5.1.1.11. Equality Type 22
 5.1.1.12. Decidable Type 22
 5.1.2. How to Find Evidence 22
 5.2. PDU Descriptions . 22
 5.2.1. PDU Examples . 23
 5.2.2. Calculations from PDU 26
 5.2.3. PDU Representations 27
 5.3. State Machines . 27
 5.4. Proofs . 29
 5.4.1. Wire Type vs Semantic Type 29
 5.4.2. Data Format Conversion 31
 5.4.3. Postel’s Law . 32
 5.4.4. Implementability 34
 5.4.5. Termination . 35
 5.4.6. Liveness . 35
 6. Standard Library Tutorial 35
 6.1. Internal Modules . 37
 6.1.1. AsciiDoc Generation 37
 6.1.2. Bit-Vectors . 38
 6.1.3. Abstract Numbers 39
 6.1.4. Denominate Numbers 39
 6.1.5. Typed Petri Nets 39
 6.1.5.1. Building a Typed Petri Net 41
 6.1.5.2. Adding Time to a Typed Petri Net 43
 6.1.5.3. Verifying a Typed Petri Net 44
 6.1.5.4. Deriving a Type from a Typed Petri Net 45
 6.1.5.5. Message Sequence Charts 46
 6.2. Formal Language Packages 47
 6.2.1. Formal Languages Defined in RFCs 48

Petit-Huguenin Expires 8 February 2023 [Page 2]

Internet-Draft Computerate Specifying August 2022

 6.2.1.1. Augmented BNF (ABNF) 48
 6.2.1.2. Structured Field Values for HTTP 51
 7. Specification Package Tutorial 52
 8. Standard Library Reference 53
 8.1. Internal Modules . 54
 8.1.1. Metanorma.Ietf 54
 8.1.2. BitVector . 54
 8.1.3. Unsigned . 55
 8.1.4. Dimension . 55
 8.1.5. Tpn . 57
 8.1.5.1. Building a TPN 58
 8.1.5.2. Verifying a TPN 60
 8.1.5.3. Deriving a Type From a TPN 61
 8.2. Formal Language Packages 61
 8.2.1. RFC 5234 (ABNF) 61
 8.2.1.1. Building an ABNF 61
 8.2.1.2. Generating and Verifying ABNF specifications . . 63
 8.2.1.3. Common Rules 63
 8.2.2. RFC 8941 (Structured Field Values for HTTP) 63
 9. Informative References 64
 Appendix A. Command Line Tools 69
 A.1. Installation . 70
 A.2. Authoring a Computerate Specification 71
 A.2.1. Using the Templates 71
 A.2.2. Converting an Existing Document 71
 A.2.3. Bibliography . 72
 A.2.3.1. Build a Bibliography with Zotero 72
 A.2.3.2. Build a Bibliography Manually 72
 A.3. Processing a Computerate Specification 73
 A.3.1. Outputs . 73
 A.4. Other Commands . 74
 A.5. Modified Tools . 74
 A.5.1. Idris2 . 74
 A.5.2. asciidoctor . 75
 A.5.3. metanorma . 75
 A.5.4. metanorma-ietf 75
 A.5.5. mnconvert . 75
 A.5.6. xml2rfc . 76
 A.5.7. idris2-vim . 76
 A.6. Bugs and Workarounds 76
 A.7. TODO List . 77
 Appendix B. Standard Library API Documentation 77
 B.1. Package computerate-specifying 77
 B.1.1. Module ComputerateSpecifying.BitVector 77
 B.1.2. Module ComputerateSpecifying.Dimension 78
 B.1.3. Module ComputerateSpecifying.Metanorma.Ietf 82
 B.1.4. Module ComputerateSpecifying.Tpn 85
 B.1.5. Module ComputerateSpecifying.Unsigned 89

Petit-Huguenin Expires 8 February 2023 [Page 3]

Internet-Draft Computerate Specifying August 2022

 B.2. Package rfc5234 . 90
 B.2.1. Module RFC5234 90
 B.2.2. Module RFC5234.Core 93
 B.3. Package rfc8941 . 94
 B.3.1. Module RFC8941 94
 Appendix C. Errata Statistics 97
 Appendix D. Converting From a Colored Petri Net 99
 D.1. Convert Color Sets 100
 D.1.1. Simple Color Sets 100
 D.1.1.1. Unit Color Sets 100
 D.1.1.2. Boolean Color Sets 100
 D.1.1.3. Integer Color Sets 101
 D.1.1.4. Large Integer Color Sets 101
 D.1.1.5. Real Color Sets 101
 D.1.1.6. String Color Sets 102
 D.1.1.7. Enumerated Color Sets 102
 D.1.1.8. Index Color Sets 102
 D.1.2. Compound Color Sets 103
 D.1.2.1. Product Color Sets 103
 D.1.2.2. Record Color Sets 103
 D.1.2.3. List Color Sets 103
 D.1.2.4. Union Color Sets 104
 D.1.2.5. Subset Color Sets 104
 D.1.2.6. Alias Color Sets 104
 D.1.3. Timed Color Sets 104
 D.1.4. Size of Color Sets 105
 D.2. Convert Places . 105
 D.3. Convert Transitions 106
 D.3.1. Convert Arcs . 106
 D.3.1.1. Convert Free Variables 106
 D.3.1.2. Convert Input Arcs 106
 D.3.1.3. Convert Inhibitor Arcs 107
 D.3.1.4. Convert Reset Arcs 107
 D.3.1.5. Convert Output Arcs 107
 D.3.2. Convert Transition Inscription 108
 D.3.2.1. Unification 108
 D.3.2.2. Guards . 109
 D.4. Convert Substitution Transitions 109
 D.5. Convert Fusion Places 110
 Appendix E. A Distributed Package Manager for Computerate
 Specifications . 110
 E.1. Distributed Source Repositories 111
 E.1.1. The "gits" Protocol 111
 E.1.2. The "mgit" and "mgits" Protocols 112
 E.1.3. Git Submodules as Dependencies 112
 E.2. Distributed Artifact Manager 113
 E.2.1. Reproducible Build 113
 E.2.2. Distributed Cache 113

Petit-Huguenin Expires 8 February 2023 [Page 4]

Internet-Draft Computerate Specifying August 2022

 E.3. Recursive Build . 114
 E.3.1. Indexing Commits 114
 E.3.2. Building a Submodule 114
 E.3.3. Pinned Down Builds 115
 Appendix F. Git Layout for Computerate Specifications 115
 Acknowledgements . 117
 Contributors . 117
 Changelog . 117
 Author’s Address . 126

1. Introduction

 If, as the unofficial IETF motto states, we believe that "running
 code" is an important part of the feedback provided to the
 standardization process, then as per the Curry-Howard equivalence
 [Curry-Howard] (that states that code and mathematical proofs are the
 same), we ought to also believe that "verified proof" is an equally
 important part of that feedback. A verified proof is a mathematical
 proof of a logical proposition that was mechanically verified by a
 computer, as opposed to just peer-reviewed.

 The "Experiences with Protocol Description" paper from Pamela Zave
 [Zave11] gives three conclusions about the usage of formal
 specifications for a protocol standard. The first conclusion states
 that informal methods (i.e. the absence of verified proofs) are
 inadequate for widely used protocols. This document is based on the
 assumption that this conclusion is correct, so its validity will not
 be discussed further.

 The second conclusion states that formal specifications are useful
 even if they fall short of the "gold standard" of a complete formal
 specification. We will show that a formal specification can be
 incrementally added to a document.

 The third conclusion from Zave’s paper states that the normative
 English language should be paraphrasing the formal specification.
 The difficulty here is that to be able to keep the formal
 specification and the normative language synchronized at all times,
 these two should be kept as physically close as possible to each
 other.

Petit-Huguenin Expires 8 February 2023 [Page 5]

Internet-Draft Computerate Specifying August 2022

 To do that we introduce the concept of "Computerate Specifying" (note
 that Computerate is a British English word). "Computerate
 Specifying" is a play on "Literate Computing", itself a play on
 "Structured Computing" (see [Knuth92] page 99). In the same way that
 Literate Programming enriches code by interspersing it with its own
 documentation, Computerate Specifying enriches a standard
 specification by interspersing it with code (or with proofs, as they
 are the same thing), making it a computerate specification.

 Note that computerate specifying is not specific to the IETF, just
 like literate computing is not restricted to the combination of TeX
 and Pascal described in Knuth’s paper. What this document describes
 is a specific instance of computerate specifying that combines
 [AsciiDoc] as formatting language and [Idris2] as programming
 language with the goal of formally specifying IETF protocols.

2. Overview

 Nowadays documents at the IETF are written in a format named xml2rfc
 v3 [RFC7991] but unfortunately making that format computerable is not
 trivial, mostly because there is no simple solution to mix code and
 XML together in the same file. Instead the [AsciiDoc] format was
 selected as a layer on top of xml2rfc v3. The AsciiDoc format has
 some superficial commonalities with the Markdown formats, but
 provides extensibility within a unified syntax.

 This is the extensibility of AsciiDoc that enables mixing code with
 text in a document, making it a candidate for literate programming
 [Knuth92]. But the most important feature added to AsciiDoc is the
 ability to insert in the document the textual result of the
 evaluation of the code in that same file.

 The AsciiRFC [I-D.ribose-asciirfc] document states additional reasons
 why AsciiDoc is a superior format for the purpose of writing
 standards, so that will not be discussed further.

 The AsciiDoc to xml2rfc v3 converter is itself an extension that is
 provided by the [Metanorma] project. Both AsciiRFC and the online
 documentation [Metanorma-IETF] for that extension are prerequisites
 to write AsciiDoc document that can be converted into an Internet-
 Draft or an RFC.

Petit-Huguenin Expires 8 February 2023 [Page 6]

Internet-Draft Computerate Specifying August 2022

 The code in a computerate specification uses the programming language
 [Idris2] in literate programming [Knuth92] mode. The Idris2
 programming language has been chosen because its type system supports
 dependent and linear types [Brady17], and that type system is the
 language in which propositions are written. The Idris2 programming
 also has reflection capabilities and support for meta-programming,
 also known as elaboration, which are useful for generating code.

 Following Zave’s second conclusion, computerate specifying is not
 restricted to the specification of protocols, or to property proving.
 There is a whole spectrum of formalism that can be introduced in a
 specification, and we will present it in the remaining sections by
 increasing order of complexity. Note that because the specification
 language is a programming language, these usages are not exhaustive,
 and plenty of other usages can and will be found after the
 publication of this document.

 | WARNING
 |
 | The IETF Trust licences [TLP5] do not grant permission to
 | distribute a retrofitted computerate specification for an
 | Internet-Draft or RFC as a whole so redistributing such
 | specification would be a copyright license infringement.
 | Appendix F shows how to use transclusions to work around that
 | issue.

 The installation and use of the tooling are explained in Appendix A.

 The remaining of this document is divided in 3 parts:

 After the Terminology (Section 3) section starts a tutorial on how to
 write a computerate specification. This tutorial is meant to be read
 in sequence, as concepts defined in early part will not be repeated
 later. On the other hand the tutorial is designed to present
 information progressively and mostly in order of complexity, so it is
 possible to start writing effective specifications without reading or
 understanding the whole tutorial.

 This tutorial begins by explaining how to write basic specifications
 (Section 4), which are specifications that use code to generate
 examples and similar parts of a document.

 Then the tutorial continues by explaining how to write verified
 specifications (Section 5), which are specifications that contains
 generated examples and similar parts that are correct by
 construction.

Petit-Huguenin Expires 8 February 2023 [Page 7]

Internet-Draft Computerate Specifying August 2022

 Writing verified specifications is difficult and time-consuming, so
 the tutorial continues by explaining how to use the modules defined
 in the computerate specification standard library (Section 6). These
 modules are useful to build examples and parts that are most
 frequently used in IETF documents.

 The tutorial ends with explanations on how to design a specification
 package (Section 7), which provides both code and documentation that
 can be used by other computerate specifications.

 The second part of this document contains the description of all the
 packages and modules in the computerate specifying standard library
 (Section 8).

 The third part contains various appendices:

 Appendix A explains how to install and use the associated tooling,
 Appendix B contains the reference manual for the standard library,
 Appendix D explains how to convert Colored Petri Nets in a form that
 can be used in specifications, Section 5.1 is a tutorial on using
 Programs and Types to prove propositions, Appendix E explains the
 distributed architecture of the standard library, and Appendix F
 describes the format of the files distributed in the standard
 library.

3. Terminology

 Computerate Specification, Specification: Literate Idris2 code
 embedded in an AsciiDoc document, containing both formal
 descriptions and human language texts, and which can be processed
 to produce documents in human language.

 Document: Any text that contains the documentation of a protocol in
 the English language. A document is the result of processing a
 specification.

 Retrofitted Specification: A specification created after a document
 was published such as the generated document coincides with the
 published document.

 In this document, the same word can be used either as an English word
 or as an Idris identifier used inside the text. To explicitly
 differentiate them, the latter is always displayed like "this". E.g.
 "IdrisDoc" is meant to convey the fact that IdrisDoc in that case is
 an Idris module or type. On the other hand the word IdrisDoc refers
 to the IdrisDoc specification.

Petit-Huguenin Expires 8 February 2023 [Page 8]

Internet-Draft Computerate Specifying August 2022

 By convention an Idris function that returns a type and types
 themselves will always start with an uppercase letter. Functions not
 returning a type start with a lowercase letter.

 For the standard library, the types names are also formed by taking
 the English word or expression, making the first letter of each word
 upper case, and removing any symbols like underscore, dash and space.
 Thus bitvector would become "Bitvector" after conversion as a type
 name but bit diagram would become "BitDiagram".

 "Metanorma" is a trademark of Ribose Inc.

4. Basic Specification Tutorial

 Creating a new computerate specification always start by creating a
 new AsciiDoc document, and there are different ways to do that.
 Writing it from scratch is difficult and error-prone, so a better
 alternative is to start by copying a template (Appendix A.2.1)
 provided as part of the tooling. Reusing a previous specification is
 not recommended as new features present in an updated version of the
 template may be missed. The last alternative is to convert
 (Appendix A.2.2) an existing RFC or Internet-Draft into an AsciiDoc
 document, which is the path to take to produce a retrofitted
 specification.

 The next step is to start adding code to that document to make it a
 computerate specification. This generally requires to split the
 AsciiDoc document in multiple documents, mostly because different
 file extensions indicate how a file will be processed by the tooling:

 * There should be a unique file with the extension ".lipkg" (lipkg
 file) that acts as the root document and as the Idris package
 description. It is recommended that the name of this file being
 either the name of the RFC or the part of the Internet-Draft name
 that will not change as it proceeds through the publication
 process. E.g. the name of the lipkg file for the computerate
 specification underneath this document is "computerate-
 specifying.lipkg". Each line of the package description in that
 file is must start with a Bird style mark ("> ") on the first
 column. A block of package description lines must be preceded by
 the beginning of the file or an empty line and followed by either
 the end of the file or an empty line.

 * Any part of the specification that contains code needs to be in a
 separate file with the extension ".lidr" (lidr file). Code in
 lidr files uses the same rules than for the package description.

Petit-Huguenin Expires 8 February 2023 [Page 9]

Internet-Draft Computerate Specifying August 2022

 * It can be convenient to also have separate files for the parts of
 the specification that do not require code. These files must have
 the ".adoc" extension (adoc file).

 These files are put back together by using, directly or indirectly,
 AsciiDoc "include::" statements in the lipkg file.

 | WARNING
 |
 | The Bird style mark is also used by AsciiDoc as an alternate
 | way of defining a blockquote [Blockquotes] which is
 | consequently not available in a computerate specification.

 The code will not appear in the rendered document, but self-inclusion
 can be used to copy part of the code into the document, thus
 guaranteeing that this code is verified by the type-checker:

 > -- tag::proof[]
 > total currying : ((a, b) -> c) -> (a -> b -> c)
 > currying f = \x => \y => f (x, y)
 > -- end::proof[]

 include::myfile.lidr[tag=proof]

 Code can be evaluated and the resulting text inserted in the document
 by using one of the code macros.

 The "code:[]" inline macro is used when the result is to be inserted
 as AsciiDoc text. To do so, the type of that result must implement
 the "Show" interface or the "Asciidoc " interface in the
 "ComputerateSpecifying.Metanorma.Ietf" module so the generated text
 is correctly escaped. For instance the following excerpt taken from
 the computerate specification of [RFC8489]:

Petit-Huguenin Expires 8 February 2023 [Page 10]

Internet-Draft Computerate Specifying August 2022

 > retrans’ : Nat -> Int -> Maybe (List1 Int)
 > retrans’ rc = fromList . take rc . scanl (+) 0
 > . unfoldr (bimap id (*2) . dup)

 > retrans : Nat -> Int -> String
 > retrans rc = maybe "Error"
 > (foldr1By (\e, a => show e ++ " ms, " ++ a)
 > (\x => "and " ++ show x ++ "ms")) . retrans’ rc

 > timeout : Nat -> Int -> Int -> String
 > timeout rc rto rm = maybe "Error"
 > (\e => show (last e + rm * rto)) (retrans’ rc rto)

 > rc : Nat; rc = 7
 > rto : Int; rto = 500
 > rm : Int; rm = 16

 For example, assuming an RTO of code:[rto]ms, requests would be
 sent at times code:[retrans rc rto].
 If the client has not received a response after code:[timeout] ms,
 the client will consider the transaction to have timed out.

 is rendered as

 "For example, assuming an RTO of 500ms, requests would be sent at
 times 0 ms, 500 ms, 1500 ms, 3500 ms, 7500 ms, 15500 ms, and 31500ms.
 If the client has not received a response after 39500 ms, the client
 will consider the transaction to have timed out."

 Additionally using the "code:[rto]", "code:[rc]", and "code:[rm]"
 macros in lieu of the equivalent constants in the document ensures
 that the text stays consistent during the development of the
 specification.

 The "code::[]" block macro (notice the double colon) is used when the
 result is to be pretty printed before being inserted as an AsciiDoc
 block. To do so, the type of that result must implement the "Pretty"
 interface in the "Text.PrettyPrint.Prettyprinter" module so the
 generated text fits in the available number of columns in the
 resulting document, even if the AsciiDoc block is indented.

 A number of attributes can be added in inline and block code macros:

 impl: Select a named implementation for the "Asciidoc", or "Pretty"
 interface.

 eval: Select a different evaluation process for the code, generally

Petit-Huguenin Expires 8 February 2023 [Page 11]

Internet-Draft Computerate Specifying August 2022

 because the default process is slow. Possible values are "exec"
 or "scheme".

 Some attributes are specific to code block macros:

 style: the style to use for the block.

 | WARNING
 |
 | Code containing a comma in a macro must be enclosed in double-
 | quotes.

 Code macros are processed separately from the code itself which means
 that, at the difference of the code, macros can reference code that
 is defined further down in the document. Code macros can even
 reference code that is defined in a separate lidr or idr files, as
 long as the name of the lidr or idr file is inserted between the last
 colon and the opening square bracket. This allows the use of code
 macros in adoc or lipkg files

 For instance the "code:basic.lidr[rto]" macro can be used in any file
 to insert the RTO value defined in the "basic.lidr" file.

 Alternating paragraphs of text and code permits to keep both
 representations as close as possible and is an effective way to
 quickly discover that the code and the text are diverging. The
 convention is to insert the code beneath the text it is related to.

 The code itself imposes an order in which it must be declared and
 used because it does not by default look for forward references.
 Because in that case the text will follow the order the code is
 organized, the document generated tends to be naturally easier to
 implement because it favors a workflow that parallels the software
 implementation of the documented protocol. [RFC8489] and [RFC8656]
 are examples of standards that were made easier to implement because
 they follow the order a software developer follows to develop each
 component.

 On the opposite documents that are not generated from a specification
 do not always have a structure that follow the way a software
 developer will implement them. When that is the case it will be
 difficult to add the Idris code right after a paragraph describing
 its functionality, as the final code may not type-check in the
 presence of unsupported forward references.

 It could be a hint that the text needs to be reorganized to be more
 software-development friendly, but for retrofitted specifications an
 alternative is to combine self-inclusion and conditions to change the

Petit-Huguenin Expires 8 February 2023 [Page 12]

Internet-Draft Computerate Specifying August 2022

 order in which paragraphs will be rendered. A paragraph has to be
 enclosed in an "ifdef::" statement that use an attribute that is
 never set ("never"), then in a "tag::" statement on a comment line:

 ifdef::never[]
 // tag::para1[]

 Text that describes a functionality

 // end::para1[]
 endif::never[]

 > -- Code that implements that functionality.

 Then the paragraph can be moved at the right place:

 include::main.lidr[tag=para1]

5. Verified Specification Tutorial

 | WARNING
 |
 | This whole section will be rewritten.

 A verified specification is a specification where the generated
 examples and other parts are not just the result of evaluating code,
 but.

 A specification uses Idris types to specify both how stream of bits
 are arranged to form valid Protocol Data Units (PDU) and how the
 exchange of PDUs between network elements is structured to form a
 valid protocol. In addition a specification can be used to prove or
 disprove a variety of properties for these types.

5.1. Evidence-Based Answers

 This document uses a special interpretation of Programs and Types
 that permits to build evidence-based answers to the kind of questions
 that a network protocol designer would be asking of its designs.

Petit-Huguenin Expires 8 February 2023 [Page 13]

Internet-Draft Computerate Specifying August 2022

 Although that interpretation is not new, few textbooks are available
 to concretely learn it and even when available, these textbooks
 generally take the long road by choosing to teach first Constructive
 Logic and then apply these teaching to Programs and Types. As there
 is in fact an even longer road that would take from Fibred Category
 Theory to Constructive Logic and then to Programs and Types, it is
 reasonable to think that there should be a shortcut there that would
 permit to start directly with Programs and Types, especially when the
 target audience is programmers, a segment of the technical population
 that is known to dislike mathematics.

 Still, the mathematically inclined or the non-programmer can look at
 [Nederpelt14], [Bornat05], or [Mimram20] for an approach based on
 mathematics.

 Basically the goals of that interpretation of Program and Types are:

 * To answer any question with either "Yes", "No", or "Don’t know".
 * To ensure that any "Yes" or "No" answer is provided with evidence.
 * To use programming to achieve these goals.

 The kind of questions that a network protocol designer may want to
 get that kind of evidence-based questions for are many:

 * Is my new version of the protocol safe to interoperate with the
 previous versions?
 * Is the protocol free of deadlock?
 * Is there corner cases that I neglected to take in account.
 * Is that faster but more efficient protocol equivalent to the
 slower but simpler original protocol?

 Notice that when we talk about evidence-based answers, we exclude by
 definition any answer that has a probability different of 0.0 or 1.0,
 and furthermore exclude evidence-free answers like the ones given by
 AI/ML.

 As a consequence, we have to admit that there are questions that do
 not have an evidence-based answer. That could be for a short list of
 reasons:

 * We did not looked in the literature yet if there is an existing
 answer to a particular question.
 * Nobody yet tried to find an answer to that question.
 * Nobody found an answer to the question yet.
 * There is no answer to that question.

Petit-Huguenin Expires 8 February 2023 [Page 14]

Internet-Draft Computerate Specifying August 2022

 There is clearly a question of locality of our knowledge at play
 here, and we are not pretending to get to some absolute truth with
 this technique.

5.1.1. Encoding Questions

 In the 90s came this new idea that it was possible to use the C++
 type system to encode calculations. A famous example was generating
 all the prime numbers during the compilation of a C++ program. The
 result was provided as a result of compiling the program, and the
 compiled program itself was irrelevant to get that result. This was
 done by reinterpreting the type system into a computational system.

 Here we are going to do the same thing, and reinterpret the type
 system of a programming language, Idris, as a way to encode our
 questions.

 As we will see, to be able to do this reinterpretation, the type
 system needs to be stronger than in a traditional programming
 language so to be able to encode a large variety of questions. We
 will also see that, paradoxically, the computational power of our
 programming language needs to be reduced to be sure that the evidence
 of our answers is valid.

 One defining feature of that programming language is that the
 compilation step that in traditional programming languages is
 monolithic, is here split in 2 separate steps:

 * The typechecking step takes a set of source files and verifies
 that all values in these sources (including the code as a value of
 the function type) can be assigned to the correct type. Because
 of the complexity of the type system, an Idris interpreter is used
 to evaluate expressions during the typechecking step.

 * The code generation step generates executable code.

 As our interpretation relies only on what happens in the typechecking
 step, we have no use for the second step of the compilation process.

5.1.1.1. Any Value of a Type is Evidence of Yes

 The cornerstone of our new interpretation is that the evidence that
 the answer of a question is Yes is an value of the type that encodes
 that question. We will see later that the evidence that the answer
 is No is the inability to produce a value of a type.

Petit-Huguenin Expires 8 February 2023 [Page 15]

Internet-Draft Computerate Specifying August 2022

 Although there is no real usage for these, if we interpret the basic
 types in our programming languages as questions, then the answers to
 these are always Yes, because we can always find a value for these
 types:

 1 : Int

 "s" : String

 In Idris a value of a type is written first, then followed by a colon
 and by the type of that value.

 Note that it does not matter if you can find one or two millions
 different pieces of evidence - the answer is still Yes. The exact
 value we pick as evidence is absolutely irrelevant, which is
 something that may seems strange to a programmer.

 This is why basic types are not really interesting in our
 interpretation, as their answer is always Yes.

5.1.1.2. Function Type As Implication

 Idris is a pure functional programming language, so functions are
 first class citizens of the language, and their type is called a
 Function Type.

 The interpretation of a Function Type is that of an implication.
 Implications are a form of "if P then Q" statement, that says
 something about the relationship between two other Types, here P and
 Q.

 In Idris the Function Type is represented as an arrow that separate
 the first type (sometimes called the domain of the function) from the
 second type (sometimes called the codomain of the function).

 P -> Q

 To answer the question "P -> Q" we need to find a value of that type.
 An value of a Function Type is a program, so a program that takes
 values of P as parameter and returns a value of Q is an evidence that
 the answer to "P -> Q" is Yes. Another equivalent reading would be
 "Assuming that we can provide values for P and values for Q, then can
 we provide a function that typechecks?"

 Notice again that there maybe many programs that fulfill that
 condition but again that is irrelevant, as we need only one to serve
 as evidence.

Petit-Huguenin Expires 8 February 2023 [Page 16]

Internet-Draft Computerate Specifying August 2022

 We can easily produce an evidence of that, let’s say using Int and
 String as our types:

 \x => "a" : Int -> String

 The expression on the left of the colon is a lambda expression. "x"
 will be bound to whatever value of Int will be passed as parameter,
 and the function will return True.

 Note that this works only because Idris is a pure functional
 language, meaning that a function can only use the values passed as
 parameters in its evaluation of the returned value. Side effects or
 global variables are not available in a pure functional language.

 A function in Idris can only take one parameter, but it is possible
 to return a function, which permits to simulate a multi-parameter
 function (this is known as currying):

 \x => \y => True : Int -> (String -> Bool)

 Function types associate to the right, so the parenthesis in the
 example above is not really necessary.

 Functions in Idris can also take a function as parameter, which will
 permit to encode the classical question:

 "Socrates is a human, all humans are mortals, is Socrates a mortal?"

 We can encode this in the Idris type system:

 data Human : Type

 data Mortal : Type

 isSocratesMortal : Human -> (Human -> Mortal) -> Mortal

 Notice that here the parenthesis are mandatory. The question can be
 read like this:

 "Assuming Socrates is a Human, and assuming that all Humans are
 Mortals, then is Socrates a Mortal?"

 The evidence is easy to find:

 isSocratesMortal : Human -> (Human -> Mortal) -> Mortal
 isSocratesMortal = \h => \f => f h

Petit-Huguenin Expires 8 February 2023 [Page 17]

Internet-Draft Computerate Specifying August 2022

 One important point is that we are not trying to say that Socrates is
 a Human (maybe he was an alien). Similarly we are not trying to say
 that there is an absolute rule that all humans are mortals (in fact
 there is evidence that, at the time of writing, the human author of
 this document was immortal).

 What we are saying is that assuming that we have evidence of a human
 (Socrates in that case) and assuming that we have evidence that all
 humans are mortals, then the only conclusion is that, Yes, Socrates
 is mortal, and the evidence for this is the program "\h => \f => f
 h".

 Note that in a function definition, the parameters can be moved to
 the left hand side (LHS) of the equal sign, like this:

 isSocratesMortal : Human -> (Human -> Mortal) -> Mortal
 isSocratesMortal h f = f h

5.1.1.3. Polymorphism

 In some cases, questions can be made more general and still have a
 unique answer. This is the case for the question explored in the
 previous section, where the question can be generalized to something
 called syllogism (also known as _Modus Ponens_).

 Polymorphism permits to substitute a type with a value that
 represents any type. Thus finding an evidence shows that the answer
 is Yes for a whole family of related questions.

 Here we express that new generic question (the answer is the same) as
 this:

 syllogism : p -> (p -> q) -> q
 syllogism x f = f x

 An identifier that starts with a lowercase character in an Idris type
 stands for all possible types.

 Here we have evidence that a question with this particular shape can
 always be answered with Yes.

5.1.1.4. Empty Type as No

 We saw previously that any value of a type is evidence of the Yes
 answer to the question encoded in that type. So the absence of a
 value for a type is evidence that the answer is No.

Petit-Huguenin Expires 8 February 2023 [Page 18]

Internet-Draft Computerate Specifying August 2022

 We have a problem here, as the evidence of No is that we cannot
 provide an evidence. But, from our local point of view, there is no
 difference between the fact that there is no evidence, and the fact
 that we did not searched hard enough for the evidence.

 We can work around this by using a property of implication, which is
 that only a type with a No answer can imply a type with a No answer.
 So if we can implement a function (the Yes answer to the implication)
 between a type and an empty type (i.e., a type with a No answer),
 then we know that the former type is empty and that the answer it
 represents is also No.

 Idris provides an empty type for that: Void (not to be confused with
 the Java type Void, which is not an empty type).

 noEvidence: Int -> Void
 noEvidence x = ?aa

 Here we cannot complete the program because we cannot produce a value
 of type Void, and that’s because Int has Yes as answer.

 In Idris names that starts with a question mark are called holes and
 stand for a part of the program that we cannot or did not yet
 complete.

 data Empty : Type where

 emptyIsNo : Empty -> Void
 emptyIsNo x impossible

 Here we can write a program that shows that that "Empty" is
 equivalent to "Void", this program acting as evidence that there is
 no evidence for "Empty", and so that the answer is No.

 Programmers will again be intrigued that a program that typechecks
 cannot be executed or tested.

 The possibility of defining a type like Void that does not have any
 values by definition is one of the reason we need a different type
 system that used in most programming languages (most programming
 languages permits the use of "null" as value for any type).

 We also touched on the fact that our programming language must be
 less powerful than usual, and it is also related to the answer No.

Petit-Huguenin Expires 8 February 2023 [Page 19]

Internet-Draft Computerate Specifying August 2022

 An implication to a type that contains at least one value is a
 function that returns that value. But there is two cases where that
 function could not return that value, and thus acts as if the
 returned type is empty, and thus represents No instead of Yes.

 The first case is if the function crashes because it does not know
 how to handle the value passed as parameter. A simple example
 example would be a function that divide 1 by the parameter - if the
 parameter is zero then the function will crashes and for the purpose
 of our interpretation is equivalent to an evidence of No because no
 value will be returned. To prevent that problem our programming
 language should be covering all inputs values, i.e. not typecheck if
 there is cases not covered.

 The second case is when, for some reason, the code get stuck inside
 the function e.g., because of an infinite loop. That would again be
 equivalent to an evidence of No.

 Idris prevents these two cases by using the "total" keyword, which
 basically turns Idris into a non-Turing Complete language.

 Note that there is no way to possibility to write code that will
 detect for any possible code if it will loop or not. That’s why
 Idris may reject some code that will not loop, but it will never
 accept code that will loop.

5.1.1.5. Sloppy Questions

 Because there is not much difference between a No answer without
 evidence and not finding an answer, it’s often useful to check and
 recheck that the question really expresses what we intended.

 In the previous section we showed that syllogisms always have an
 answer of Yes. There is a series of fallacies [Bennett15] that are
 closely related to syllogisms, and here’s one of them:

 syllogism : p -> (q -> p) -> q

 That can be read as "Assuming Socrates is a Human, and assuming that
 all Mortal are Humans, then is Socrates a Mortal?" It may seems
 obvious that we cannot answer that question, so we may be able to get
 a No answer by rewriting the question that way:

 syllogistic_fallacy : (p -> (q -> p) -> q) -> Void

 But in spite of our efforts, we cannot provide an evidence of that,
 which means that it is time to look closer at our question.

Petit-Huguenin Expires 8 February 2023 [Page 20]

Internet-Draft Computerate Specifying August 2022

 The issue is that for this to be a fallacy, we need to assume that
 there is no evidence that all Humans are Mortals, which the previous
 question does not say. With this modified question, we can now
 produce a evidence that it is indeed a fallacy:

 syllogistic_fallacy : ((p -> q) -> Void) ->
 (p -> (q -> p) -> q) -> Void
 syllogistic_fallacy f g = f (\x => g x (\y => x))

5.1.1.6. Product Type

 The Product type permits to combine two or more questions such as the
 question represented by this type will have an answer of Yes only if
 all the questions also have an answer of Yes.

 The simplest Product type in Idris is the tuple, which is represented
 as a list of types separated by commas and enclosed in parentheses:

 product : (String, Int, Char) -> Bool
 product : (x, y, z) -> True

 The evidence has the same form as the type.

 We can also provide evidence that the form above is equivalent to its
 curried form in general, and vice-versa:

 curry : ((a, b) -> c) -> (a -> b -> c)
 curry f x y = f (x, y)

 uncurry : (a -> b -> c) -> ((a, b) -> c)
 uncurry f x = f (fst x) (snd x)

5.1.1.7. Sum Type

 The Sum type is a way to combine two or more questions such as the
 question represented by the Sum type will have an answer of Yes if at
 least one of the questions have an answer of Yes.

 The simplest Sum type for two questions in Idris is "Either a b".

 sum : Either String Void -> Bool
 sum x = True

 We can combine Sum and Product types to reorganize a question and
 show evidence that the answer is general.

 dist : (a, Either b c) -> (Either a b, Either a c)
 dist x = (Left (fst x), Left (fst x))

Petit-Huguenin Expires 8 February 2023 [Page 21]

Internet-Draft Computerate Specifying August 2022

 Sum and Product combined with negation gives us more general answers:

 dm1 : (Either (a -> Void) (b -> Void)) -> ((a, b) -> Void)
 dm1 (Left x) y = x (fst y)
 dm1 (Right x) y = x (snd y)

 dm2 : (a -> Void, b -> Void) -> ((Either a b) -> Void)
 dm2 x (Left y) = fst x y
 dm2 x (Right y) = snd x y

 dm3 : ((Either a b) -> Void) -> (a -> Void, b -> Void)
 dm3 f = (\x => f (Left x), \x => f (Right x))

5.1.1.8. Inductive Type

 TBD.

5.1.1.9. Pi Type

 TBD.

5.1.1.10. Sigma Type

 TBD.

5.1.1.11. Equality Type

 TBD.

5.1.1.12. Decidable Type

 TBD.

5.1.2. How to Find Evidence

 TBD

5.2. PDU Descriptions

 The PDUs in a communication protocol determines how data is laid out
 before it is sent over a communication link. Generally a PDU is
 described only in the context of the layer that this particular
 protocol is operating at, e.g. an application protocol PDU only
 describes the data as sent over UDP or TCP, not over Ethernet or Wi-
 Fi.

Petit-Huguenin Expires 8 February 2023 [Page 22]

Internet-Draft Computerate Specifying August 2022

 PDUs can generally be split into two broad categories, binary and
 text, and a protocol PDU mostly falls into one of these two
 categories.

 PDU descriptions can be defined as specifications for at least three
 reasons: the generation of examples that are correct by construction,
 correctness in displaying the result of calculations, and correctness
 in representing the structure of a PDU. Independently of these
 reasons, a PDU description is a basic component of a specification
 that will probably be needed regardless.

5.2.1. PDU Examples

 Examples in protocol documents are frequently incorrect, which proves
 to have a significant negative impact as they are too often misused
 as normative text. See Appendix C for statistics about the frequency
 of incorrect examples in RFC errata.

 Ensuring example correctness is achieved by adding the result of a
 computation (the example) directly inside the document. If that
 computation is done from a type that is (physically and conceptually)
 close to the normative text, then we gain some level of assurance
 that both the normative text and the derived examples will match.

 Generating an example that is correct by construction always starts
 by defining a type that describes the format of the data to display.
 The Internet Header Format in section 3.1 of [RFC0791] will be used
 in the following sections as example.

 In this section we start by defining an Idris type, using a
 Generalized Algebraic Data Type (GADT). In that case we have only
 one constructor ("MkInternetHeader") which is defined as a Product
 Type that "concatenate" all the fields on the Internet Header. One
 specific aspect of Idris types is that we can enrich the definition
 of each field with constraints that then have to be fulfilled when a
 value of that type will be built.

Petit-Huguenin Expires 8 February 2023 [Page 23]

Internet-Draft Computerate Specifying August 2022

 > data InternetHeader : Type where
 > MkInternetHeader :
 > (version : Int) -> version = 4 =>
 > (ihl : Int) -> ihl >= 5 && ihl < 16 = True =>
 > (tos : Int) -> tos >= 0 && tos <= 256 = True =>
 > (length : Int) -> length >= (5 * 4) &&
 > length < 65536 = True =>
 > (id : Int) -> id >= 0 && id < 65536 = True =>
 > (flags : Int) -> flags >= 0 && flags < 16 = True =>
 > (offset : Int) -> offset >= 0 && offset < 8192 = True =>
 > (ttl : Int) -> ttl >= 0 && ttl < 256 = True =>
 > (protocol : Int) -> protocol >= 0 &&
 > protocol < 256 = True =>
 > InternetHeader

 where

 version: This field is constrained to always contain the value 4.

 ihl: "Int" is a builtin signed integer so it is constrained to
 contain only positive integers lower than 16.

 others: Same, all the fields are constrained to unsigned integers
 fitting inside the number of bits defined in [RFC0791].

 An Idris type where the fields in a constructor are organized like
 the "InternetHeader" by ordering them in a sequence is called a Pi
 type - or, when there is no dependencies between fields as there is
 in "version = 4", a Product type. Although there is no equivalence
 in most programming languages to a Pi type, Product types are known
 as classes in Java and struct in C.

 Another way to organize a type is called the Sum type, which is a
 type with multiple constructors that act as alternative. Sum types
 can be used in C with a combination of struct and union, and since
 Java 14 by using sealed records.

 Sum types have a dependent counterpart named a Sigma type, which is a
 tuple in which the type of the second element depends on the value of
 the first element. This is mostly returned by functions, with the
 returned Sigma type carrying both a value and a proof of the validity
 of that value.

 From that point it is possible to define a value that fulfills all
 the constraints. The following values are taken from example 1 in
 [RFC0791] Appendix A.

Petit-Huguenin Expires 8 February 2023 [Page 24]

Internet-Draft Computerate Specifying August 2022

 > example1 : InternetHeader
 > example1 = MkInternetHeader 4 5 0 21 111 0 0 123 1

 The "=>" symbol after a constraint indicates that Idris should try to
 automatically find a proof that this constraint is met by the values
 in the example, which it successfully does in the example above.

 The following example, where the constraints defined in the
 InternetHeader type are not met, will not type-check in Idris (an
 error message will be generated) and thus can not be used to generate
 an example.

 example1’ : InternetHeader
 example1’ = MkInternetHeader 6 5 0 21 111 0 0 123 1

 The next step is to define an Idris function that converts a value of
 the type "InternetHeader" into the kind of bit diagram that is showed
 in Appendix A of [RFC0791].

 > Show InternetHeader where
 > show (MkInternetHeader version ihl tos length id flags offset
 > ttl protocol) = ?showPrec_rhs_1

 Here we implement the "Show" interface that permits to define the
 adhoc polymorphic function "show" for "InternetHeader", function that
 will convert the value into the right character string. Idris names
 starting with a question mark like in "?showPrec_rhs_1" are so-called
 holes, which are placeholder for code to be written, while still
 permitting type-checking.

 After replacing the hole by the actual code, the following embedded
 code can be used in the document to generate an example that is
 correct by construction, at least up to mistakes in the specification
 (i.e. the constraints in "InternetHeader") and bugs in the "show"
 function.

 code::[example1]

 will generate the equivalent AsciiDoc text:

Petit-Huguenin Expires 8 February 2023 [Page 25]

Internet-Draft Computerate Specifying August 2022

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver= 4 |IHL= 5 |Type of Service| Total Length = 21 |
 +-+
 | Identification = 111 |Flg=0| Fragment Offset = 0 |
 +-+
 | Time = 123 | Protocol = 1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 This generated example is similar to the first of the examples in
 appendix A of RFC 791.

5.2.2. Calculations from PDU

 The previous section showed how to define a type that precisely
 describes a PDU, how to generates examples that are are values of
 that type, and how to insert them in a document.

 Our specification, which has the form of an Idris type, can be seen
 as a generalization of all the possible examples for that type. Now
 that we went through the effort of precisely defining that type, it
 would be useful to use it to also calculate statements about that
 syntax.

 In RFC 791 the description of the field IHL states "[...]that the
 minimum value for a correct header is 5." The origin of this number
 may be a little mysterious, so it is better to use a formula to
 calculate it and insert the result instead.

 Inserting a calculation is easy:

 Note that the minimum value for a correct header is
 is code:[sizeHeader ‘div‘ ihlUnit].

 > sizeHeader : Int
 > sizeHeader = 20

 > ihlUnit : Int
 > ihlUnit = 4

 Here we can insert a code fragment that is using a function that is
 defined later in the document because the Idris code is evaluated
 before the document is processed.

Petit-Huguenin Expires 8 February 2023 [Page 26]

Internet-Draft Computerate Specifying August 2022

 Note the difference with examples: The number "5" is not an example
 of value of the type "InternetHeader", but a property of that type.

 Systematically using the result of calculation on types in a
 specification makes it more resistant to mistakes that are introduced
 as result of modifications.

5.2.3. PDU Representations

 The layout of a PDU, i.e. the size and order of the fields that
 compose it can be represented in a document in various forms. One of
 them is just an enumeration of these fields in order, each field
 identified by a name and accompanied by some description of that
 field in the form of the number of bits it occupies in the PDU and
 how to interpret these bits.

 That layout can also be presented as text, as a list, as a table, as
 a bit diagram, at the convenience of the document author. In all
 cases, some parts of the description of each field can be extracted
 from our Idris type just like we did in Section 5.2.2.

 RFC 791 section 3.1 represents the PDUs defined in it both as bit
 diagrams and as lists of fields.

5.3. State Machines

 A network protocol, which is how the various PDUs defined in a
 document are exchanged between network elements, can always be
 understood as a set of state machines. At the difference of PDUs,
 that are generally described in a way that is close to their Idris
 counterpart, state machines in a document are generally only
 described as text.

 Note that, just like an Idris representation of a PDU should also
 contain all the possible constraints on that PDU but not more, a
 state machine should contain all the possible constraints in the
 exchange of PDUs, but not less.

 This issue is most visible in one of the two state machines defined
 in RFC 791, the one for fragmenting IP packets (the other is for
 unfragmenting packets). The text describes two different algorithms
 to fragment a packet but in that case each algorithm should be
 understood as one instance of a more general state machine. That
 state machine describes all the possible sequences of fragments that
 can be generated by an algorithm that is compliant with RFC 791 and
 it would be an Idris type that is equivalent to the following
 algorithm:

Petit-Huguenin Expires 8 February 2023 [Page 27]

Internet-Draft Computerate Specifying August 2022

 * For a specific packet size, generate a list of all the binary
 values {b0,.., bN} with N being the packet size divided by 8 and
 rounded-up, and 0..N representing positional indexes for each of
 the 8 byte chunks of the packet.

 * For each binary value in that list, generate a list of values that
 represents the number of consecutive bits of the same value (e.g..
 "0x110001011" generates a "[2, 3, 1, 1, 2]" list), each such
 sequence representing a given fragment.

 * Remove from that list of lists any list that contains a number
 that, after multiplication by 8, is higher than the maximum size
 of a fragment.

 * For each remaining list in that list, generate the list of
 fragments, i.e with the correct offset, length and More bit.

 * Generate all the possible permutations for each list of fragments.

 We can see that this state machine takes in account the fact that an
 IP packet can not only be fragmented in fragments of various sizes -
 as long as the constraints are respected - but also that these
 fragments can be sent in any order.

 Then the algorithms described in the document can be seen as
 generating a subset of all the possible list of fragments that can be
 generated by our state machine. It is then easy to check that these
 algorithms cannot generate fragments lists that cannot be generated
 by our state machine.

 As a consequence, the unfragment state machine must be able to
 regenerate a valid unfragmented packet for any of the fragments list
 generated by our fragment state machine. Furthermore, the unfragment
 state machine must also take in account fragment lists that are
 modified by the network (itself defined as a state machine) in the
 following ways:

 * fragments can be dropped;

 * the fragments order can change (this is already covered by the
 fact that our fragment state machine generates all possible
 orders);

 * fragments can be duplicated multiple times;

 * fragments can be delayed;

Petit-Huguenin Expires 8 February 2023 [Page 28]

Internet-Draft Computerate Specifying August 2022

 * fragments can be received that were never sent by the fragment
 state machine.

 Then the algorithm described in the document can be compared with the
 unfragment state machine to verify that all states and transitions
 are covered.

 Defining a state machine in Idris can be done in an ad-hoc way
 [Linear-Resources], particularly by using linear types that express
 resources’ consumption.

5.4. Proofs

 Under the Curry-Howard equivalence, the Idris types that we created
 to describe PDUs and state machine are formal logic propositions, and
 being able to construct values from these types (like we did for the
 examples), is proof that these propositions are true. These are also
 called internal verifications [Stump16].

 External verifications are made of additional propositions (as Idris
 types) and proofs (as code for these types) with the goal of
 verifying additional properties.

 One kind of proofs that one would want in a specification are related
 to isomorphism, i.e. a guarantee that two or more descriptions of a
 PDU or a state machine contain exactly the same information, but
 there is others.

5.4.1. Wire Type vs Semantic Type

 The Idris types that are used for generating examples, calculations
 or representations are generally very close to the bit structure of
 the PDU. But some properties may be better expressed by defining
 types that are more abstract. We call the former Wire Types, and the
 latter Semantic Types.

 As example, the type in Section 5.2.1 is a wire type, because it
 follows exactly the PDU layout. But fragmentation can be more easily
 described using the following semantic type:

Petit-Huguenin Expires 8 February 2023 [Page 29]

Internet-Draft Computerate Specifying August 2022

 > data InternetHeader’ : Type where
 > Full : (ihl : Int) -> ihl >= 5 && ihl < 16 = True =>
 > (tos : Int) -> tos >= 0 && tos <= 256 = True =>
 > (length : Int) -> length >= (5 * 4) &&
 > length < 65536 = True =>
 > (ttl : Int) -> ttl >= 0 && ttl < 256 = True =>
 > (protocol : Int) -> protocol >= 0 &&
 > protocol < 256 = True =>
 > InternetHeader’
 > First : (ihl : Int) -> ihl >= 5 && ihl < 16 = True =>
 > (tos : Int) -> tos >= 0 && tos <= 256 = True =>
 > (length : Int) -> length >= (5 * 4) &&
 > length < 65536 = True =>
 > (id : Int) -> id >= 0 && id < 65536 = True =>
 > (ttl : Int) -> ttl >= 0 && ttl < 256 = True =>
 > (protocol : Int) -> protocol >= 0 &&
 > protocol < 256 = True =>
 > InternetHeader’
 > Next : (ihl : Int) -> ihl >= 5 && ihl < 16 = True =>
 > (tos : Int) -> tos >= 0 && tos <= 256 = True =>
 > (length : Int) -> length >= (5 * 4) &&
 > length < 65536 = True =>
 > (offset : Int) -> length > 0 &&
 > length < 8192 = True =>
 > (id : Int) -> id >= 0 && id < 65536 = True =>
 > (ttl : Int) -> ttl >= 0 && ttl < 256 = True =>
 > (protocol : Int) -> protocol >= 0 &&
 > protocol < 256 = True =>
 > InternetHeader’
 > Last : (ihl : Int) -> ihl >= 5 && ihl < 16 = True =>
 > (tos : Int) -> tos >= 0 && tos <= 256 = True =>
 > (length : Int) -> length >= (5 * 4) &&
 > length < 65536 = True =>
 > (offset : Int) -> length > 0 &&
 > length < 8192 = True =>
 > (id : Int) -> id >= 0 && id < 65536 = True =>
 > (ttl : Int) -> ttl >= 0 && ttl < 256 = True =>
 > (protocol : Int) -> protocol >= 0 &&
 > protocol < 256 = True =>
 > InternetHeader’

 First the "version" field is eliminated, because it always contains
 the same constant.

 Then the "flags" and "offset" fields are reorganized so to provide
 four different alternate packets:

Petit-Huguenin Expires 8 February 2023 [Page 30]

Internet-Draft Computerate Specifying August 2022

 * The "Full" constructor represents an unfragmented packet. It is
 isomorphic to a "MkInternetHeader" with a "flags" and "offset"
 values of 0.

 * The "First" constructor represents the first fragment of a packet.
 It is isomorphic to a "MkInternetHeader" with a "flags" value of 1
 and "offset" value of 0.

 * The "Next" constructor represents a intermediate fragments of a
 packet. It is isomorphic to a "MkInternetHeader" with a "flags"
 value of 1 and "offset" value different than 0.

 * Finally the "Last" constructor represents the last fragment of a
 packet. It is isomorphic to a "MkInternetHeader" with a "flags"
 value of 0 and "offset" value different than 0.

 One of the main issue of having two types for the same data is
 ensuring that they both contains the same information, i.e. that they
 are isomorphic. To ensure that these two types are carrying the same
 information we need to define and implement four functions that, all
 together, prove that the types are isomorphic. This is done by
 defining the 4 types below, as propositions to be proven:

 > total
 > to : InternetHeader -> InternetHeader’
 >
 > total
 > from : InternetHeader’ -> InternetHeader
 >
 > total
 > toFrom : (x : InternetHeader’) -> to (from x) = x
 >
 > total
 > fromTo : (x : InternetHeader) -> from (to x) = x

 Successfully implementing these functions will prove that the two
 types are isomorphic. Note the usage of the "total" keyword to
 ensure that these are proofs and not mere programs.

5.4.2. Data Format Conversion

 For documents that describe a conversion between different data
 layouts, having a proof that guarantees that no information is lost
 in the process can be beneficial. For instance, we observe that
 syntax encoding tends to be replaced each ten years or so by
 something "better". Here again isomorphism can tell us exactly what
 kind of information we lost and gained during that replacement.

Petit-Huguenin Expires 8 February 2023 [Page 31]

Internet-Draft Computerate Specifying August 2022

 Here, for example, the definition of a function that would verify an
 isomorphism between an XML format and a JSON format:

 isXmlAndJsonSame: Iso (XML, DeltaXML) (JSON, DeltaJson)
 ...

 DeltaXML expresses what is gained by switching from XML to JSON, and
 DeltaJson expresses what is lost.

5.4.3. Postel’s Law

 | Be conservative in what you do, be liberal in what you accept from
 | others.
 |
 | -- Jon Postel - RFC 761

 One of the downsides of having specifications is that there is no
 wiggle room possible when implementing them. An implementation
 either conforms to the specification or does not.

 One analogy would be specifying a pair of gears. If one decides to
 have both of them made with tolerances that are too small, then it is
 very likely that they will not be able to move when put together. A
 bit of slack is needed to get the gear smoothly working together but
 more importantly the cost of making these gears is directly
 proportional to their tolerance. There is an inflexion point where
 the cost of an high precision gear outweighs its purpose.

 We have a similar issue when implementing a specification, where
 having an absolutely conform implementation may cost more money than
 it is worth spending. On the other hand a specification exists for
 the purpose of interoperability, so we need some guidelines on what
 to ignore in a specification to make it cost effective.

 Postel’s law proposes an informal way of defining that wiggle room by
 actually having two different specifications, one that defines a data
 layout for the purpose of sending it, and another one that defines a
 data layout for the purpose of receiving that data layout.

 Existing documents express that dichotomy in the form of the usage of
 SHOULD/SHOULD NOT/RECOMMENDED/NOT RECOMMENDED [RFC2119] keywords.
 For example the SDP spec says that "[t]he sequence CRLF (0x0d0a) is
 used to end a line, although parsers SHOULD be tolerant and also
 accept lines terminated with a single newline character." This
 directly infers two specifications, one used to define an SDP when
 sending it, that enforces using only CRLF, and a second
 specification, used to define an SDP when receiving it (or parsing
 it), that accepts both CRLF and LF.

Petit-Huguenin Expires 8 February 2023 [Page 32]

Internet-Draft Computerate Specifying August 2022

 Note that the converse is not necessarily true, i.e. not all usages
 of these keywords are related to Postel’s Law.

 To ensure that the differences between the sending specification and
 the receiving specification do not create interoperability problems,
 we can use a variant of isomorphism, as shown in the following
 example (data constructors and code elided):

 data Sending : Type where

 data Receiving : Type where

 to : Sending -> List Receiving

 from : Receiving -> Sending

 toFrom : (y : Receiving) -> Elem y (to (from y))

 fromTo : (y : Sending) -> True = all (== y) [from x | x <- to y]

 Here we define two data types, one that describes the data layout
 that is permitted to be sent ("Sending") and one that describes the
 data layout that is permitted to be received ("Receiving"). For each
 data layout that is possible to send, there is one or more matching
 receiving data layouts. This is expressed by the function "to" that
 takes as input one Sending value and returns a list of Receiving
 values.

 Conversely, the "from" function maps a Receiving data layout onto a
 Sending data layout. Note the asymmetry there, which prevents using
 a standard proof of isomorphism.

 Then the "toFrom" and "fromTo" proofs verify that there is no
 interoperability issue by guaranteeing that each Receiving value maps
 to one and only one Sending instance and that this mapping is
 isomorphic.

 All of this will provide a clear guidance of when and where to use a
 SHOULD keyword or its variants, without loss of interoperability.

 As an trivial example, the following proves that accepting LF
 characters in addition to CRLF characters as end of line markers does
 not break interoperability:

Petit-Huguenin Expires 8 February 2023 [Page 33]

Internet-Draft Computerate Specifying August 2022

 data Sending : Type where
 S_CRLF : Sending

 Eq Sending where
 S_CRLF == S_CRLF = True

 data Receiving : Type where
 R_CRLF : Receiving
 R_LF : Receiving

 to : Sending -> List Receiving
 to S_CRLF = [R_CRLF, R_LF]

 from : Receiving -> Sending
 from R_CRLF = S_CRLF
 from R_LF = S_CRLF

 toFrom : (y : Receiving) -> Elem y (to (from y))
 toFrom R_CRLF = Here
 toFrom R_LF = There Here

 fromTo : (y : Sending) -> True = all (== y) [from x | x <- to y]
 fromTo S_CRLF = Refl

 Postel’s Law is not limited to the interpretation of PDUs as a state
 machine on the receiving side can also be designed to accept more
 than what a sending state machine can produce. A similar isomorphism
 proof can be used to ensure that this is done without loss of
 interoperability.

5.4.4. Implementability

 When applied, the techniques described in Section 5.2 and Section 5.3
 result in a set of types that represents the whole protocol. These
 types can be assembled together, using another set of types, to
 represent a simulation of that protocol that covers all sending and
 receiving processes.

 The types can then be implemented, and that implementation acts as a
 proof that this protocol is actually implementable.

 To make these pieces of code composable, a specification is split in
 multiple modules, each one represented as a unique function. The
 type of each of these functions is derived from the state machines
 described in Section 5.3, by bundling together all the inputs of the
 state machine as the input for that function, and bundling all the
 outputs of the state machine as the output of this function.

Petit-Huguenin Expires 8 February 2023 [Page 34]

Internet-Draft Computerate Specifying August 2022

 For instance the IP layer is really 4 different functions:

 * A function that converts between a byte array and a tree
 representation (parsing).

 * A function that takes a tree representation and a maximum MTU and
 returns a list of tree representations, each one fitting inside
 the MTU.

 * A function that accumulates tree representations of an IP fragment
 until a tree representation of a full IP packet can be returned.

 * A function that convert a tree representation into a byte array.

 The description of each function is incomplete, as in addition to the
 input and the output listed, these functions needs some ancillary
 data, in the form of:

 * state, which is basically values stored between evaluations of a
 function,

 * an optional signal, that can be used as an API request or
 response. As timers are a fundamental building block for
 communication protocols, one common uses for that signal are to
 request the arming of a timer, and to receive the indication of
 the expiration of that timer.

5.4.5. Termination

 Proving that a protocol does not loop is equivalent to proving that a
 implementation of the types for that protocol does not loop either
 i.e., terminates. This is done by using the type described in
 Section 5.4.4 and making sure that it type-check when the "total"
 keyword is used.

5.4.6. Liveness

 A protocol may never terminate - in fact most of the time the server
 side of a protocol is a loop - but it still can do some useful work
 in that loop. This property is called liveness.

6. Standard Library Tutorial

 One of the ultimate goals of this document is to convince authors to
 use the techniques it describes to write their documents. Because
 doing so requires a lot of efforts, an important intermediate goal is
 to show authors that the benefits of computerate specifying are worth
 learning and becoming proficient in these techniques.

Petit-Huguenin Expires 8 February 2023 [Page 35]

Internet-Draft Computerate Specifying August 2022

 The best way to reach that intermediate goal is to apply these
 technique to documents that are in the process of being published by
 the IETF and if issues are found, report them to the authors. Doing
 that on published RFCs, especially just after their publication,
 would be unnecessarily mean. On the other hand doing that on all
 Internet-Drafts as they are submitted would not be scalable.

 The best place to do a Computerate Specifying oriented review seems
 to be when a document enters IETF Last Call. These reviews would
 then be indistinguishable from the reviews done by an hypothetical
 Formal Specification Directorate. An argument can be made that,
 ultimately, writing a specification for a document could be an
 activity too specialized, just like Security reviews are, and that an
 actual Directorate should be assembled.

 Alas, it is clear that writing a specification from scratch (as in
 Section 5) for an existing document takes far more time than the Last
 Call duration would allow. On the other hand the work needed could
 be greatly reduced if, instead of writing that specification from
 scratch, packages and modules containing types and code were
 available for the parts that are reusable across specifications.

 The types and code in a computerate specification form an Idris
 package, which is a collection of Idris modules. An Idris module
 forms a namespace hierarchy for the types and functions defined in it
 and is physically stored as a file. Section 7 describes how to build
 an specification that can be exported.

 This section explains how to use the existing modules and packages
 that are available to import in a computerate specification as part
 of the standard library.

 Packages and modules in the standard library fall into 2 categories:

 Internal Modules: These are the modules that are not tied to an
 existing RFC but that are common to many specifications, so they
 are defined by the underlying package of this specification.

 The modules in that category are explained in Section 6.1, their
 reference is in Section 8.1, and their API documentation is in
 Appendix B.

 Packages for formal languages: Formal languages are used in
 documents to formalize some parts of them, so having libraries to
 formalize these formal languages also helps accelerating their
 verification.

Petit-Huguenin Expires 8 February 2023 [Page 36]

Internet-Draft Computerate Specifying August 2022

 The packages in that category are explained in Section 6.2, in
 Section 8.2, and its associated reference in Appendix B.

 Together these packages and modules form the Computerate Specifying
 Standard Library (Section 8).

6.1. Internal Modules

 This document is itself generated from a computerate specification
 that contains data types and functions that can be reused in future
 specifications, and as a whole is part of the standard library for
 computerate specifying. The following sections describe the Idris
 modules defined in that specification.

6.1.1. AsciiDoc Generation

 Section 4 explained how implementing the "Asciidoc" and/or "Pretty"
 interfaces (by respectively using the code:[] and code::[] macros)
 permits to format the result of a code evaluation so it can be
 inserted into a document.

 Particularly, the inline code:[] macro generates a string of
 characters that can be safely inserted in an AsciiDoc document, but
 sometimes it is useful to instead generate an AsciiDoc fragment.

 The "ComputerateSpecifying.Metanorma.Ietf" module contains types and
 functions that guarantee that the AsciiDoc text generated is
 compliant with its specification. All these types implement the
 "Asciidoc" interface so they can be directly used by the inline code
 macro.

 In the following example the description of an Internet Header is
 converted into a "Block", which is then directly converted into an
 AsciiDoc block and inserted in the document:

 > example : InternetHeader -> Block
 > -- code elided

 code:[example example1]

 The "AsciiDoc" module is not limited to generating examples, as it
 can be used to generate any AsciiDoc structure from Idris code. In
 the future it would even be possible to use Natural Language
 Generation [NLG] to, instead of paraphrasing the English text from
 the Idris types, directly generate it.

 The reference documentation for this module is in Section 8.1.1 and
 its API in Appendix B.1.3.

Petit-Huguenin Expires 8 February 2023 [Page 37]

Internet-Draft Computerate Specifying August 2022

 | NOTE 1: Still work in progress, but there is plans to implement
 | [RFC8792] so examples that do not fit in 72 columns page are
 | folded according to the rules in that document.

 | NOTE 2: Also work in progress, but there is plans to
 | reimplement some of the extensions in the asciidoctor-diagram
 | extension so not only the text and SVG versions of its content
 | are simultaneously available in the xml2rfc v3 generated
 | document, but they can be programmatically generated,

6.1.2. Bit-Vectors

 One of the most common type arrangement of data in a Protocol Data
 Units (PDU) is the bit-vector, which is a list of individual bits
 that can be interpreted either as flags or as a codepoint.

 Although bit-vectors could be interpreted as numbers, arithmetic or
 comparison operations on them (other than equality) are meaningless,
 so they are not implemented as such.

 The operations that can be done on bit-vectors are constraint by the
 number of bits they hold. Some operations work only on bit-vectors
 of the same exact size, like testing for equality and the bitwise
 operations. For instance the "a ‘and‘ b" operation will typecheck
 only if "a" and "b" are of the same size.

 Other operations can act on bit-vectors of different sizes, but the
 types used will guarantee that the number of bits of the resulting
 value is correct. For instance "extract 5 a" will return a new bit-
 vector that is guaranteed to have a size of 5.

 Bit-vectors can be specialized and made available for reuse. E.g.,
 IP addresses and UUIDs are specialized bit-vectors and are defined in
 their own packages.

 The reference documentation for this module is in Section 8.1.2 and
 its API in Appendix B.1.1.

 | NOTE: Still work in progress, but a future version of this
 | library will use a deep embedded DSL so a list of operations on
 | bit-vectors can be printed instead of the value resulting from
 | these operations.

Petit-Huguenin Expires 8 February 2023 [Page 38]

Internet-Draft Computerate Specifying August 2022

6.1.3. Abstract Numbers

 Abstract numbers are numbers that are not associated with the
 counting of things, but on which arithmetic operations can be
 performed (as opposed to bit-vectors). Examples of abstract numbers
 used in PDU are checksums and CRCs.

 The only type of abstract number defined at this time is "Unsigned
 n", which defines an unsigned number that uses a specific number of
 bits. This supplements the numerical types defined in Idris, types
 that are all using a number of bits that is a multiple of 8.

 The reference documentation for the module containing the "Unsigned
 n" type and associated functions is in Section 8.1.3 and its API in
 Appendix B.1.5.

 | NOTE: This library is under heavy redesign to improve unsigned
 | numbers (including by using a deep DSL), and to add Signed
 | numbers in both ones’ and twos’ complement forms.

6.1.4. Denominate Numbers

 A Denominate Numbers (DN) is any number that is associated with a
 quantity of something (called a dimension) and that is scaled by a
 unit. Example of DN are "5 bits", "10 meters", or "1 hour and 5
 seconds", which respectively have a dimension of information, length
 and time.

 DN are useful when combining different numbers of the same dimension
 but different units (like mixing up Metric and Imperial units, which
 caused the loss of the Mars Climate Orbiter in September 1999), or
 when combining numbers of different dimensions (like dividing a
 length with time to obtain a measure of speed).

 For instance gas consumption in the USA is measured in miles per
 gallon, whereas in Europe it is measured in liter per 100 kilometers.
 In that case "((5, mile / gallon), (liter / (100 * kilometer)))" is
 displayed as "47.04".

 The reference documentation for this module is in Section 8.1.4 and
 its API in Appendix B.1.2.

6.1.5. Typed Petri Nets

 | Never send a human to do a machine’s job.
 |
 | -- Agent Smith in The Matrix (1999)

Petit-Huguenin Expires 8 February 2023 [Page 39]

Internet-Draft Computerate Specifying August 2022

 Concurrent systems can be represented using two different families of
 techniques, algebraic and graphical. Algebraic techniques (e.g.,
 process calculi) are mathematically well-defined, but lack an
 intuitive representation that would be useful to developers not
 completely familiar with these techniques.

 On the other hand, graphical representations of concurrent systems
 (e.g., state machines) can be understood by a larger segment of
 developers, but generally lack a standardized and/or mathematical
 definition.

 Petri Nets are at the intersection of these two techniques. They are
 typically graphical representations of concurrent processes, but are
 based on a well-defined mathematical theory. One way to look at
 Petri Nets is as a way to group multiple state machines together. A
 Petri Net also has the advantage that the same graph can be reused to
 derive other Petri Nets, e.g., Timed Petri Nets (that can be used to
 collect performance metrics) or Stochastic Petri Nets (which can be
 seen as a way to group multiple Markov chains together).

 A Typed Petri Net (TPN) is an algebraic specification of a Petri Net,
 such as it can be expressed as an Idris value, and be easily reused
 for various purposes. TPNs are based on Colored Petri Nets, as
 defined in [Jensen09] and [Aalst11]. [Jensen07] is a shorter
 introduction to Colored Petri Net that should be read first.
 Particularly, section 2 contains the various definition of the
 terminology that is used in this document, augmented as follow:

 * The word Color is used instead of the word Colour.

 * _unification_ is defined in the middle of the left column of page
 6.

 * _free variable_ is defined in the middle of the right column of
 page 6.

 A TPN that covers a whole protocol (i.e. client, network, and server)
 is useful to prove the properties listed in Section 5.4.4,
 Section 5.4.5, and Section 5.4.6. But a TPN can also be designed so
 each part of the protocol is defined separately from the others,
 making it a Hierarchical TPN.

 The reference documentation for this module is in Section 8.1.5 and
 its API in Appendix B.1.4.

Petit-Huguenin Expires 8 February 2023 [Page 40]

Internet-Draft Computerate Specifying August 2022

6.1.5.1. Building a Typed Petri Net

 The following example of TPN is converted from Figure 7 in
 [Jensen07]:

 > No : Type
 > No = Int

 > Data : Type
 > Data = String

 > NoxData : Type
 > NoxData = (No, Data)

 > namespace Sender
 > export
 > sender : Module [NoxData, NoxData, No] ()
 > sender = do
 > packetsToSend <- port "Packets To Send" NoxData Both
 > nextSend <- place "NextSend" No {init=pure 1}
 > a <- port "A" NoxData Out
 > d <- port "D" No In
 > transition "Send Packet"
 > [input packetsToSend (No, Data) one,
 > input nextSend No one]
 > [(0, 0, 1, 0)]
 > [output (No, Data) packetsToSend pure,
 > output No nextSend pure,
 > output (No, Data) a pure]
 > (\((n, d), n’) => pure ((n, d), n, (n, d)))
 > transition "Receive Ack"
 > [input nextSend No one,
 > input d No one]
 > empty
 > [output No nextSend pure]
 > (pure . snd)

 Similarly, the following example of TPN is converted from Figure 11
 in [Jensen07]:

Petit-Huguenin Expires 8 February 2023 [Page 41]

Internet-Draft Computerate Specifying August 2022

 > namespace Protocol
 > export
 > protocol : Top
 > protocol = top $ do
 > packetsToSend <- place "Packets To Send" NoxData
 > {init=[(1, "COL"), (2, "OUR"), (3, "ED "), (4, "PET"),
 > (5, "RI "), (6, "NET")]}
 > dataReceived <- place "Data Received" Data {init=pure ""}
 > a <- place "A" NoxData
 > b <- place "B" NoxData
 > c <- place "C" No
 > d <- place "D" No
 > instance "" sender [packetsToSend, a, d]
 > instance "" network [a, b, c, d]
 > instance "" receiver [dataReceived, b, c]

 In these examples, the "place", "port", "input", "output",
 "transition", and "instance" functions are the combinators used to
 define Typed Petri Net modules in computerate specifications and are
 described in Section 8.1.5.

 TPN modules are written as constants of type "Module xs ()", which is
 a Monad used to implement a deep embedded DSL. The Monad ensures
 that places, ports and instances all have a unique name inside a
 module. It also ensures that all places and ports used by
 transitions and instances are declared in the same module. Finally
 it ensures that all ports exported by a module are correctly mapped
 to a local place or port when imported as an instance.

 Ultimately these combinators are not meant to be used as a way to
 directly design a TPN, as doing this is very tedious and error-prone.
 Instead the general advice is to use the graphical tool cpntools
 [Cpntools] to design a CPN and then to follow the step-by-step
 tutorial in Appendix D to convert it into a Typed Petri Net.
 Experience shows that, even for the simplest of protocols,
 systematically starting formalization by 1) designing a complete
 semantic type and 2) designing a top-level Petri Net, both in
 cpntools, is the most efficient way to proceed.

Petit-Huguenin Expires 8 February 2023 [Page 42]

Internet-Draft Computerate Specifying August 2022

 | NOTE: It is planned to add to the tooling a graphical tool on
 | top of TPN that will replace cpntools, which is starting to
 | show its age. To do so each combinator will be enhanced with
 | values that contains the graphical properties (position, size,
 | color,...) that the graphical tool will use to display a TPN.
 | Conversely the graphical tool will be designed to modify these
 | properties in the source code in response to a user interface
 | action, like moving or resizing a place, port, transition or
 | instance. This will permit to continue to use the computerate
 | specification as the storage format for a TPN, including its
 | graphical representation.

6.1.5.2. Adding Time to a Typed Petri Net

 Timed TPN are built by using Timed tokens (which are types wrapped
 into the "Timed" type) and by adding delays in transitions and arcs.

 The following is an example of an implementation in CPN of a timer,
 here that will timeout after 100 units of time:

 +-------+ () / \ () +-------+
 | start |-->| State |-->| stop |
 | timer | \ / | timer |
 +-------+ ‘---’ +-------+
 | | () ^
 | V |
 | +---------+ |
 | | timeout | | ()@+100
 | +---------+ |
 | ^ |
 | ()@+100 | () |
 | _____ |
 | / \ |
 +------->| Timer |-------+
 \ /
 ‘---’

 Figure 1

 This CPN can be translated as the following Timed TPN:

Petit-Huguenin Expires 8 February 2023 [Page 43]

Internet-Draft Computerate Specifying August 2022

 > timer : Top
 > timer = top $ do
 > state <- place "State" ()
 > timer <- place "Timer" (Timed ())
 > transition "start timer"
 > empty
 > empty
 > [output () state pure,
 > output () timer {delay=100} (\x => [timed x])]
 > (pure . dup)
 > transition "stop timer"
 > [input state () one,
 > input timer () {delay=100}
 > (\case (x ::: []) => Just (untimed x); _ => Nothing)]
 > empty
 > empty
 > (pure . fst)
 > transition "timeout"
 > [input state () one,
 > input timer ()
 > (\case (x ::: []) => Just (untimed x); _ => Nothing)]
 > empty
 > empty
 > (pure . fst)

 Here the "Timer" place contains "Timed ()" values, which are added by
 the "start timer" transition. The added token will enable the
 "timeout" transition only after 100 unit of time have passed. Note
 that the clock used to calculate enablement of transitions is
 discrete, so a simulation does not have to really wait for that time.
 The "timeout" transition also removes the token from the "Timer"
 place, effectively making sure that it does not trigger a second
 time.

 The "stop timer" transition is used when an event made that timer
 useless. In that case we want to remove the token from the "Timer"
 place ahead of its expiration time, so it is not fired later. This
 is the meaning of the delay inscription in the input arc, which is
 understood as a preemptive delay.

6.1.5.3. Verifying a Typed Petri Net

 The TPN values created in Section 6.1.5.1 can be used to test, debug
 and validate a protocol.

Petit-Huguenin Expires 8 February 2023 [Page 44]

Internet-Draft Computerate Specifying August 2022

 This is done by running a simulation of the protocol. The plan is
 that this simulation will be driven from the future graphical
 interface but meanwhile it is possible to directly call a set of
 functions.

 A simulation is executed when a succession of transitions occurs. It
 starts by building an initial marking, which is done by using the
 "initialMarking" function on a top TPN. For instance the command
 "initialMarking protocol" returns the following:

 [{(1, "COL"), (2, "OUR"), (3, "ED "), (4, "PET"), (5, "RI "),
 (6, "NET")}, {""}, {}, {}, {}, {}, {1}, {False, True}, {1}]

 After this each transition occurrence is composed of 3 steps:

 1. Find the list of transitions that are enabled from the current
 marking:

 :let transitions = enabledTransitions marking top

 2. Find the possible bindings for the transition selected. There is
 only one transition possible for that TPN instance, so we can use
 it to list the bindings:

 :let bindings = bindings marking top (head transitions)

 3. Create a new current marking from the transition and binding
 selected. Again we have only one possible binding in this
 example, so we can use it to update the marking after applying
 the binding and transition:

 :let marking = bindings marking top (head transitions)
 (head bindings)

 We can then calculate the next occurrence by looping back to step
 (1).

 The simulation stops when there is no enabled transition for the
 current marking.

6.1.5.4. Deriving a Type from a Typed Petri Net

 Designing and validating a Petri Net are essential tasks, but they
 cannot be directly used to guarantee that a process is following part
 or totality of this Petri Net.

Petit-Huguenin Expires 8 February 2023 [Page 45]

Internet-Draft Computerate Specifying August 2022

 To do so we need to generate a Sum type that encodes all the
 transitions as constructors. This type then can be used to build a
 proof that a list of binding elements are valid according to that
 Petri Net.

 In CPN, a binding is a list of (name, value) tuples, making it easy
 to read. In TPN we are using instead a tuple of the values as taken
 as input to the "Transition" inscription. That means that the
 variables are identified by position in this tuple, instead of by
 name.

 The example below shows two constructors for the example Petri Net
 used in this document.

 sendPacket’ : (NoxData, No) -> List (NoxData, No, NoxData)

 updateSendPacket : Marking xs -> (NoxData, No) -> Marking xs

 data T210 : Marking xs -> Type where
 Init : T210 (initialMarking top)
 SendPacket : (binding : (NoxData, No)) ->
 (elem (fst binding) (packetToSend m)) =>
 (elem (snd binding) (Ns m)) =>
 (sendPacket’ binding =
 pure (fst binding, snd binding, fst binding)) =>
 T210 m ->
 T210 (updateSendPacket binding m)

6.1.5.5. Message Sequence Charts

 The type generated from a TPN can then be used for various purposes
 but this section is about generated a Message Sequence Chart (MSC)
 for it.

 MSCs are a common way to represent an example of execution of a
 protocol, i.e. of the interactions between the underlying state
 machines. Although sequence charts are often implicitly used to
 describe a protocol, that description can only be partial and thus
 cannot replace completely a description of the protocol by other
 means.

 There is 4 steps to generate automatically an MSC that is guaranteed
 to be conform to the specification:

 1. Design a Colored Petri Net of the behavior of the protocol. A
 Petri Net models all sides of a communications protocol. This
 includes a model of the network itself, which makes it the best
 way to generate an MSC.

Petit-Huguenin Expires 8 February 2023 [Page 46]

Internet-Draft Computerate Specifying August 2022

 2. Build a sequence of binding elements as described in
 Section 6.1.5.3.

 3. Convert the TPN into a specialized type that guarantees that the
 list of (transition, binding) that represent the MSC to draw is
 valid according to the TPN. This is explained in
 Section 6.1.5.4.

 E.g. the following instance typechecks with the generated type for
 the example CPN used in this document:

 test : T210 ?
 test = Init
 |> SendPacket ((1, "COL"), 1)
 |> TransmitPacket ((1, "COL"), True)
 |> ReceivePacket ((1, "COL"), "", 1)
 |> TransmitAck 1
 |> ReceiveAck (1, 1)

 5. The last step is to pass that instance to a function that will
 generate the MSC:

 code::[generateMsc test [(A, D), (B, C)]]

 The parameters of the "generateMsc" function are the list of bindings
 and the name of the Petri Net places between which lines will be
 drawn. If for some reason the network manipulates the token between
 A and B, or B and C, the function will accordingly show that the
 packet is either lost, duplicated, delayed or even that a packet
 arrived from an unknown sender.

 It is also possible to pass a user-defined function that will take as
 parameter a token as sent by places A or C and convert it in a packet
 that is to be showed after the MSC itself.

 This function can be provided by the type of proofs described in
 Section 5.4.1. That means that, as long as we have a proof of
 isomorphism between them, we can use Semantic Types directly in our
 TPN instead of Wire Types, making the model simpler.

6.2. Formal Language Packages

 When different representations of a specification share some common
 characteristics, it is usual to generalize them into a formal
 language.

Petit-Huguenin Expires 8 February 2023 [Page 47]

Internet-Draft Computerate Specifying August 2022

 One shared limitation of these languages is that they cannot always
 formalize all the constraints of a specific data layout, so they have
 to be enriched with comments.

 Another consequence is the proliferation of these languages, with
 each new formal language trying to integrate more constraints than
 the previous ones. For that reason Computerate Specifying does not
 favor one formal language over the others, and will try to provide
 code to help use all of them.

 Most of the formal languages used at the IETF already come with a set
 of tools that permits to verify that their text representation in an
 RFC is syntactically correct. Instead the formalisms introduced in
 the standard library for these formal language are about generating
 text that is correct by construction, thus making these tools
 redundant.

 But going beyond merely ensuring that the textual representation of a
 formal language, it is also a goal to ensure that the examples in
 RFCs that uses a formal language are not just correct according to
 the specification, but also to their description in that formal
 language. This, again, is not done by verifying that examples are
 compatible with the formal language, but by permitting to generate
 only examples that are correct by construction.

 A useful analogy for an RFC is to think of it as a dam in a river,
 i.e., an immutable separation between a set of activities happening
 upstream (Internet-Drafts, reviews, using tools to verify the formal
 languages, etc..), and a set of activities happening downstream after
 publication (implementation, test suites, erratas, etc..). A
 computerate specification is at the same time a way to collect all
 the upstream tools needed to build that RFC, but also making sure
 that the activities downstream can be done on the strong foundations
 brought by the use of the Idris type system.

6.2.1. Formal Languages Defined in RFCs

 The following sections describe the support in the standard library
 for formal languages that are defined in an RFC.

6.2.1.1. Augmented BNF (ABNF)

 Augmented Backus-Naur Form (ABNF) [RFC5234] is a formal language that
 can be used to describe a text based PDU.

 An ABNF specification can be described by the functions defined in
 the "RFC5234.Abnf" module, each of them mapping one of the operators
 defined in Section 3 of [RFC5234].

Petit-Huguenin Expires 8 February 2023 [Page 48]

Internet-Draft Computerate Specifying August 2022

 For instance the following definition:

 > alpha : Abnf True
 > alpha = rule "ALPHA" $ hexRange 0x41 0x5a <|> hexRange 0x61 0x7a

 is equivalent to the ABNF rule:

 ALPHA = %x41-5A / %x61-7A

 Using this language permits to generate an ABNF specification that is
 guaranteed to be syntactically correct. But the language imposes
 constraints that go beyond mere syntax and also guarantee that the
 generated ABNF specification is semantically correct.

 For instance the following ABNF is syntactically correct but it will
 take an infinite amount of time to parse something with it:

 total
 bad : Abnf True
 bad = bad "a"

 Here the use of the "total" keyword will ensure that the Idris
 typechecker will reject specifications that will loop forever.

 On the other hand this language can describe the parsing of infinite
 streams. For instance the following matches an infinite sequence of
 "a" or "A":

 total
 good : Abnf True
 good = "a" good

 Together, the functions used to describe an ABNF specification form a
 DSL with deep embedding. Because of this deep embedding, the
 resulting internal structure can be used in various ways.

 The primary use of that internal structure is to format a textual
 representation of the ABNF specification that can be directly
 inserted in the documentation part of a computerate specification.
 The internal structure implements the "Pretty" interface format
 automatically the output.

 By default the ABNF specification is displayed exactly as entered.

Petit-Huguenin Expires 8 February 2023 [Page 49]

Internet-Draft Computerate Specifying August 2022

 A secondary use of that internal structure is as an index on the
 ‘"Example s g‘" type, which permits to build proofs that specific
 strings are valid according to an ABNF grammar. But ABNF itself is
 not always powerful enough to encode all the constraints needed to
 describe a PDU. An example of that is the following subset of the
 ABNF defined in [I-D.rivest-sexp]:

 sexp = list / token

 list = "(" sexp ")"

 token = 1*DIGIT ":" *OCTET

 In the "token" rule the constraint that the actual number of OCTET
 terminal values allowed is provided by the number on the left of the
 colon cannot be encoded in ABNF. Because of that a valid example of
 a Sexp should be built from a separate type:

 > mutual
 > data Sexp = T (List Int) | L SexpList

 > data SexpList : Type where
 > Nil : SexpList
 > (::) : Sexp -> SexpList -> SexpList

 > t : String -> Sexp
 > t = T . map cast . unpack

 > l : SexpList -> Sexp
 > l = L

 Then a function with type "Sexp -> (s : List Int ** Example s sexp))"
 can be implemented to generate examples that are by construction
 valid according to the ABNF, and that can be directly inserted in the
 document, such as:

 > example : Sexp -> (s : List Int ** Example s Main.sexp)
 > -- code elided

 > ex : Sexp
 > ex = l [t "a", t "bc", l [t "def"]]

 code::[example ex]

 will generate:

 (1:a2:bc(3:def))

Petit-Huguenin Expires 8 February 2023 [Page 50]

Internet-Draft Computerate Specifying August 2022

 The ABNF DSL and the ability of building proofs for examples subsume
 most of the existing ABNF verification tools, making them redundant.

 The "RFC5234.Core" module contains the definitions for common ABNF
 rules and is meant to be imported by computerate specifications that
 define ABNF specification that use them.

6.2.1.2. Structured Field Values for HTTP

 Structured Field Values for HTTP [RFC8941] is a common syntax for
 HTTP header and trailers fields that is more restrictive than
 traditional HTTP field values.

 The "RFC8941" module permits to build examples that are valid
 Structured Field Values (SFV) by using a Domain Specific Language
 (DSL).

 SFV are composed of 4 different types of lists, each with different
 properties. The two internal types of list, parameter list and inner
 list, use Idris lists but each carries different values.

 A parameter list contains tuples made of a string acting as a key,
 and of a typed value, which can be an item or "nothing" that
 representes a key without attached value. A tuple is created used
 the "#" operator, which can be thought as the equal sign. An example
 of parameters is "["a" # int 1, "b" # nothing]".

 Similarly an inner list uses the Idris List notation and contains
 items each with an optional parameter list. An example of inner list
 is "[str "a", int 1 {p=["a" # int 1, "b" # nothing]}]". If present,
 the parameter list must be passed as an implicit Idris parameter
 named "p".

 The two other types of lists in SFV are top level lists and are using
 sequencing with the "do" notation.

 The "SfList" type is made of a sequence of items or inner lists. The
 items and the inner lists can themselves carry a parameter list,
 using the same syntax:

 a : SfList
 a = do
 int 1
 str "a" {p=["a" # int 1, "b" # nothing]}
 list [str "a", int 1 {p=["a" # int 1, "b" # nothing]}]

Petit-Huguenin Expires 8 February 2023 [Page 51]

Internet-Draft Computerate Specifying August 2022

 Similarly the "SfDict" type is a sequence of tuples made of a string
 acting as a key and of an item, an inner list or "nothing". All
 these, including the nothing item, can carry a list of parameters, as
 in this example:

 a : SfDict
 a = do
 "a" # int 1
 "b" # str "a" {p=["a" # int 1, "b" # nothing]}
 "c" # list [str "a", int 1 {p=["a" # int 1, "b" # nothing]}]
 "d" # nothing {p=["a" # int 1, "b" # nothing]}

 Finally the "SfItem" type is an item that can carry a list of
 parameters as in this example:

 a : SfDict
 a = str "a" {p=["a" # int 1, "b" # nothing]}

7. Specification Package Tutorial

 The previous section was about specifications that reuse other
 specifications by importing the types and functions defined in them.
 This section is about organizing a computerate specification such as
 the types and functions defined in it can be imported and used by
 other specifications.

 Such specifications export 4 or 5 components:

 An Idris package: This is the binary artifact that the code in an
 importing specification will use. E.g., this is what a
 specification using ABNF will use to define the ABNF specific to
 the standard described in that document.

 The Idris package is built from the lipkg file that doubles as the
 Asciidoc root document. The "modules" statement in that file
 lists all the idr and lidr files that will compose that package.

 A tutorial: This is a document that guides the reader step by step
 in the use of the Idris package. This document may contain
 examples, which may themselves be generated by the Idris API.

 The tutorial is an adoc or lidr file. Using an lidr file makes
 writing examples easier, but the code in that file is not part of
 either the Idris package or the API documentation.

 A reference: This is a document that explains the Idris package as a
 whole i.e, grouping explanations by feature.

Petit-Huguenin Expires 8 February 2023 [Page 52]

Internet-Draft Computerate Specifying August 2022

 This is the document part of the lipkg files that compose the API
 documentation.

 An API documentation: This is a document that lists all the Idris
 types and functions in alphabetic order, together with structured
 comments, for the Idris package.

 This document is automatically generated from the structured Idris
 comments in the idr and lidr files that compose the reference
 document.

 An eventual bibliography: This document (or documents if both
 normative and informative bibliographies are needed) contains the
 bibliographic items cited in the other exported documents.

 Such a specification can be defined in an original computerate
 specification or in a retrofitted specification (RFC or I-D that was
 later enriched with Idris code). But an RFC cannot be modified, and
 the authors of an I-D may be different from the authors of the Idris
 code and unwilling to integrate the documentation in their document.
 Because of that there are multiple scenarios on how to publish the
 documentation for an Idris API:

 In the same document: This is possible when both documentation and
 specification are under the control of the same authors. In this
 document, the documentation for the modules that compose the
 Computerate Specification Standard Library are published in this
 document, with the tutorials in Section 6, the references in
 Section 8.1 and the API documentations in Appendix B.1.

 In an separate document: The tutorial, reference and API
 documentation documents can simply be included in a separate
 Internet-Draft whose sole purpose is to carry that documentation.

 In the Standard Library: Some retrofitted specifications are deemed
 essential for authors of specifications, so the documentation for
 these retrofitted specification is part of this document. This is
 the case for the ABNF documentation (Section 6.2.1.1,
 Section 8.2.1, and Appendix B.2) and the APHD documentation
 (Section 6.2.1.2, Section 8.2.2, and Appendix B.3).

8. Standard Library Reference

 This section is contains the reference documentation for all the
 packages distributed as part of the tooling.

Petit-Huguenin Expires 8 February 2023 [Page 53]

Internet-Draft Computerate Specifying August 2022

8.1. Internal Modules

 The following internal modules are available in the tooling.

 * ComputerateSpecifying.BitVector

 * ComputerateSpecifying.Dimension

8.1.1. Metanorma.Ietf

 The "MetaNorma.Ietf" module provides a way to programmatically build
 an AsciiDoc document without having to worry about the particular
 formatting details. The types in this library are not meant to be
 used directly, but as the return type of functions in modules that
 generates text for insertion in a document.

 At the difference of the AsciiDoc rendering process that tries very
 hard to render a document in any circumstances, the types in this
 module are meant to enforce the generation of AsciiDoc that results
 in valid xml2rfc v3 document.

 "Asciidoc" is an interface that can be implemented to transform an
 Idris type into a character string that can be safely inserted in an
 AsciiDoc document.

 The "Text", "Must", "MustNot", "Required", "Shall", "ShallNot",
 "Should", "ShouldNot", "Recommended", "May", "Optional", "HardBreak",
 "Contact", "Comment", "Italic", "Link", "Index", "Citation", "Bold",
 "Subscript", "Superscript", "Monospace", "Unicode", "Cross", and
 "Attribute" constructors are used to build individual inline
 elements.

 The "Paragraph" constructor is used to build a paragraph, and is
 composed from a list of inline elements.

8.1.2. BitVector

 "BitVector" is a dependent type representing a list of bits, indexed
 by the number of bits contained in that list. The type is inspired
 by Chapter 6 of [Kroening16] and by [Brinkmann02].

 A value of type "BitVector n" can be built as a series of zeros
 ("bitVector") or can be built by using a list of "O" (for 0) and "I"
 (for 1) constructors. E.g., "[O, I, O, O]" builds a bit-vector of
 type "BitVector 4" with a value equivalent to 0b0100.

Petit-Huguenin Expires 8 February 2023 [Page 54]

Internet-Draft Computerate Specifying August 2022

 Bit-vectors can be compared for equality, but they are not ordered.
 They also are not numbers so arithmetic operations cannot be applied
 to them.

 Bit-vectors can be concatenated ("(++)"), a smaller bit-vector can be
 extracted from an existing bit-vector ("extract"), or a bit-vector
 can be extended by adding a number of zeros in front of it
 ("extend").

 The usual unary bitwise ("shiftL", "shiftR", "not") operations are
 defined for bit-vectors, as well as binary bitwise operations between
 two bit-vectors of the same size ("and", "or", "xor")

 Finally it is possible to convert the bit at a specific position in a
 bit-vector into a "Bool" value ("test").

8.1.3. Unsigned

 A value of type "Unsigned n" encodes an unsigned integer as a
 "BitVector" of length "n".

8.1.4. Dimension

 This module permits to manipulate denominate numbers, which are
 numbers associated with a unit. Examples of denominate numbers are
 "(5, meter / second)" (which uses a unit of speed), or "(10, meter *
 meter * meter)" (which uses a unit of volume).

 In this module a denominate number is a value of type "Denominate
 xs". It carries one number as the fraction of two Integer. Its type
 is indexed over a list of dimensions in canonical order, each
 associated with an exponent number. All together this type can
 represent any unit that is based directly or indirectly from the base
 dimensions defined in the "Dimension" type.

 A unit dimension can be chosen as one of the predefined physical
 dimensions, "Time" and "Length".

 The non-physical unit dimension "Info" (for "unit of information") is
 also defined.

 It is also possible to define other non-physical unit dimensions as
 needed:

 apple : Denominate [(Q "Apple", 1)]
 apple = Intro 1 1

Petit-Huguenin Expires 8 February 2023 [Page 55]

Internet-Draft Computerate Specifying August 2022

 Finally dimensionless numbers (i.e., denominate numbers with type
 "Dimensionless") can be constructed by using the "none" unit, as in
 "(10, none)". The "fromInteger" and "fromDouble" functions also
 construct dimensionless numbers.

 Denominate numbers are constructed by using the "toDenominate"
 function on a tuple made of a number and a unit. E.g., "toDenominate
 (5, megabit)" will build the denominate number 5 with the "megabit"
 unit. The "cast" can also be used when the type of the returned
 value can be inferred.

 For simplicity, examples of denominate numbers in this document are
 given in their tuple form.

 Denominate numbers can be added, subtracted or negated (respectively
 "+", "-", and "neg"). All these operations can only be done on
 denominate numbers with the same exact dimension, and the result will
 also carry the same dimension. This prevents what is colloquially
 known as mixing apples and oranges.

 For the same reason, adding a number to a non-dimensionless
 denominate number is equally impossible.

 The "*", "/", and "recip" operations respectively multiply, divide
 and calculate the reciprocal of denominate numbers. These operations
 can be done on denominate number that have different types, and the
 resulting dimension will be derived from the respective dimension of
 the arguments. E.g. multiplying "(5, meter)" by "(6, meter)" will
 return the equivalent of "(30, meter * meter)".

 Also multiplying a denominate number by a (dimensionless) number is
 possible e.g., as in multiplying "(5, meter)" by "(10, none)", which
 will return the equivalent of "(50, meter)".

 Denominate numbers can be evaluated into a "Double" value by using
 the "fromDenominate" function. The second parameter of the function
 is the unit that we want the result expressed in. E.g.,
 "fromDenominate (toDenominate (5, meter / second)) (kilometer /
 hour)" will return 18.0, which is 5 meters per second expressed in
 kilometers per hour.

 Denominate numbers can also be evaluated into a rounded down Int by
 using the "fromDenominateToInt" function.

Petit-Huguenin Expires 8 February 2023 [Page 56]

Internet-Draft Computerate Specifying August 2022

 Ultimately we want to insert a denominate number, together with its
 unit, as text in a computerate specification. This is done by using
 a tuple made of the denominate number and of the expected unit.
 E.g., code:["(toDenominate (2, byte), bit)"] will insert "16" in the
 text.

 Adding the "impl=unit" attribute to the macro will insert the textual
 representation with the correct plural of the unit instead of its
 value. E.g., code:["(toDenominate (2, byte), bit)",impl=unit] will
 insert "bits" in the text.

 It is also possible to insert the sequence of operations done on a
 denominate number, instead of the result of the evaluation, by adding
 the "impl=formula" attribute to the code macro. E.g.,
 code:["(toDenominate (2, byte), bit)",impl=formula] will insert "2 *
 8" in the text.

 The "name" function can be used to define a variable that will be
 displayed in the formula.

 The "Size" interface can be implemented to retrieve the size of a
 type as a denominate number of dimension "Info".

 For each dimension that is useful for Internet standards (time,
 length, and information) a list of constants that represents units of
 that dimension are pre-defined.

 Units that uses a prefix are automatically generated, which is the
 case for SI units for the "Time" dimension (i.e., from "yoctosecond"
 to "yottasecond"), SI units (only positive powers of 10) for the
 "Info" dimension (i.e., from "kilobit" to "yottabit"), and IEC units
 (positive powers of 2) for the "Info" dimension (i.e., from "kibibit"
 to "yobibit").

 Additional constants like "minute", "hour", "day", "byte", "wyde",
 "tetra", "octa", etc, complement the standard units. The "byte",
 "wyde", "tetra", and "octa" units are defined in page 4 of [Knuth05].

8.1.5. Tpn

 The "Tpn" module permits to build Typed Petri Nets. It is designed
 to mimic Hierarchical Colored Petri Nets so conversions could be done
 mechanically.

Petit-Huguenin Expires 8 February 2023 [Page 57]

Internet-Draft Computerate Specifying August 2022

8.1.5.1. Building a TPN

 The "Timed" type is used as a wrapper around another type when its
 values need to be associated with time, with the "timed" and
 "untimed" functions used to respectively unwrap and wrap a value.

 The "input" function builds an input arc for a transition. The
 inscription is a function that takes one or more tokens as input and
 generates an optional value of the input arc type. The optionality
 of the output type permits to decide if the tokens can or cannot be
 used in the transition.

 The "one" function can be used when a unique token is to be taken
 from the place and passed to the function.

 The type of the codomain of that function may be different from the
 type of the place to permit to do some manipulation on the token
 itself.

 These two features can be combined together by using pattern matching
 inside the inscription.

 The delay value (which defaults to 0) in an input arc indicates a
 preemptive time from which a "Timed" wrapped token will enable the
 transition.

 The "inhibitor" function builds an inhibitor arc for a transition.
 An inhibitor arc is a variant of input arcs that can trigger a
 transition only if the place it is connected is empty.

 The "reset" function builds a reset arc for a transition. A reset
 arc is a variant of input arcs that always trigger a transition
 regardless of the content of the connected place, and that will empty
 the connected place when triggered.

 The "output" function builds an output arc for a transition. An
 output arc takes a value of the type created by a transition,
 converts it using the function (acting as inscription) into a list of
 tokens and insert that list in the destination place. The list of
 tokens can be empty if no token has to be added, or can contain one
 or more tokens.

 The order of the parameters of that function is the inverse of the
 "input" function to show that the function codomain is the type of
 the place.

 An output arc can contain a delay value (which defaults to 0) that
 will be added to any token that is wrapped in the "Timed" type.

Petit-Huguenin Expires 8 February 2023 [Page 58]

Internet-Draft Computerate Specifying August 2022

 The "Module" Monad is used to group together places, ports,
 transitions and instances of other modules into a module by using the
 "do" notation.

 The "place" function builds a Petri Net place, which is a structure
 that holds state in the form of tokens. A place has a name, a type
 (or color) and an initial content which defaults to emptyness.

 Alternatively the "port" function can be used to build a Petri Net
 port, which is used to define the interface of a Petri Net module
 and, like a place, has a name and a type. A port does not have an
 initial content but contains the direction tokens are allowed to flow
 between an outer module instance and a module definition.

 Note that the names carried by most elements on a TPN are only used
 for documentation purpose. That means that a name can be empty or
 can be used multiple times.

 The "transition" function brings together input arcs (including
 inhibitor and reset arcs), output arcs, and the function that will
 convert input tokens into output tokens.

 The "unifications" list contains a 4-tuples in the form (input-index,
 data-index, input-index, data-index). Each input-index is an index
 in the list of inputs. Each data index is an index in the tuple
 representing the codomain of the inscription. The value of the first
 input-index/data-index will be unified with the value of the second
 input-index/data-index.

 The "instance" function imports another module in this module and
 assign a local Place or Port to each Port imported from that module.

 Note that using an instance of a module is different from using a
 module directly. A port is a temporary placeholder for a place, so a
 port needs at some point to be mapped to a place, that will contain
 the actual state. The is the role of an instance to do that mapping.

 Finally the "top" function wraps a module that has no exported ports,
 so it can be used as input to the functions described in the next
 section.

Petit-Huguenin Expires 8 February 2023 [Page 59]

Internet-Draft Computerate Specifying August 2022

 The core of TPN is implemented by the functions described above. It
 is possible to combine these functions to build more complex
 functions to simplify the construction of a TPN, or to implement
 variants of CPN. In any case these complex functions are always
 transformed into core functions, making the simulators and other
 processes that take as input a TPN simpler to implement and
 independent from these complex functions. The functions in the
 following paragraphs are built that way.

 The "free" function adds the possibility of using a free variable as
 part of the inscription on a transition. Using a free variable
 requires that its type implements the interface "Enum".

 The "addStep", "addPriorities", and "addTime" functions add the
 transitions and places needed to implements the global step,
 transition priorities, and time features to an existing TPN.

8.1.5.2. Verifying a TPN

 The "Marking" type describes a marking, which is a set of places and
 their content. It represents the global state of the system
 described by a TPN. A marking is indexed over the list of types of
 the places in it, such as we can guarantee that the marking structure
 never changes when transitions are fired.

 The initial state of the system is generated by the "initialMarking"
 function.

 A "Transition" represents the unique path through modules to a
 transition.

 The "enabledTransitions" function generates a list of all the
 transitions that are enabled by a specific marking.

 A "Binding" is a tuple that has the same size as the number of input
 arcs and that contains a token from each of the respective places
 such as substituting the input places in a transition by places that
 contain only that value will still enable the transition.

 The "bindings" function lists all the possible bindings for a
 specific marking and an enabled transition.

 The "transition" function transforms a marking into a new marking by
 applying a specific binding to a transition.

Petit-Huguenin Expires 8 February 2023 [Page 60]

Internet-Draft Computerate Specifying August 2022

8.1.5.3. Deriving a Type From a TPN

 The "deriveType" function takes a top-level TPN (as an instance of
 the type "Top") and generates the declaration of a new Sum type, with
 one constructor per transition, plus one constructor for the initial
 marking. This type then can serve to define a proof that a list of
 (transition, binding) tuples are valid according to that Petri Net.

 On the generated type, the "Init" constructor builds an initial
 marking. Then each other constructors are used to validate a
 sequence of binding elements. Each non-initial constructor carries a
 set of proofs, one per input arc that prove that the binding is
 originating from the places in the marking, and one that prove that
 this transition is enabled, by showing that the transition using that
 binding is deterministic. Finally each transition updates the
 marking according to the output arcs, i.e removing and adding tokens.

8.2. Formal Language Packages

 The following modules are available in the tooling.

 * RFC5234

 * RFC5234.Core

 * RFC8941

8.2.1. RFC 5234 (ABNF)

 The "RFC5234" module permits to build ABNF grammars. It contains a
 DSL designed to mimic closely the syntax described in [RFC5234].

8.2.1.1. Building an ABNF

 All ABNF elements use the Idris type "Abnf Bool". The index must be
 set to "True" if the element is consuming one or more characters,
 "False" if not. This is the mechanism that permits to verify that an
 ABNF specification can be used to parse in finite time.

 The section numbers below refer to sections in [RFC5234].

 Giving a name to an element, as defined in section 2.2, uses the
 "rule" function. It takes the name of the rule and an ABNF element
 as parameters.

 Concatenation of elements, as defined in section 3.1, uses the "(>>)"
 infix operator or the "do" notation to sequence elements.

Petit-Huguenin Expires 8 February 2023 [Page 61]

Internet-Draft Computerate Specifying August 2022

 Alternation of elements, as defined in section 3.2, uses the "<|>"
 infix operator to define alternative between elements.

 Grouping of elements, as defined in section 3.5, uses the "group"
 function. It takes an element as parameter.

 Variable repetition of elements, as defined in section 3.6, uses the
 "repeat" function. This function takes a value of type
 "Text.Quantity" and an ABNF element as parameters. In additional to
 the quantities defined in the "Text.Quantity" modules, the "many" and
 "some" can be used as equivalent to respectively "*" and "1*".

 A sequence repetition for an exact number of repetitions, as defined
 in section 3.7, uses the "exact" function. This function takes the
 number of repetitions and an element as parameters.

 Optional element, as defined in section 3.8, uses the "optional"
 function. This function takes an element as parameter.

 Terminal values, as defined in section 2.3, use the "binTerm",
 "decTerm", "hexTerm", "binTerms", "decTerms", "hexTerms", and
 "string" functions. The "binTerm", "decTerm", and "hexTerm"
 functions take one parameter, which is the terminal value. The
 "bin", "dec", and "hex" prefixes refer to the encoding that will be
 used to display the equivalent ABNF, not to the encoding that is used
 for the parameter value, which is independent. Similarly the
 "binTerms", "decTerms", and "hexTerms" functions take one parameter,
 which is a non-empty list of terminal values.

 The "string" function takes a string of case insensitive US-ASCII
 character as parameter.

 Value range alternative, as defined in section 3.4, uses the
 "binRange", "decRange", and "hexRange" functions. It takes two
 parameters as lower and higher bounds for the range. Alternatives
 are generated in reverse order if the first parameter has an higher
 value than the value of the second parameter.

 Comments can be added at the top level of a grammar, or for
 individual rules. At the top level an "empty" rule must be used for
 the second parameter:

 do foo
 comment (singleton "Top level comment") empty
 bar

 For individual rules, the comment must be added after the rule
 function:

Petit-Huguenin Expires 8 February 2023 [Page 62]

Internet-Draft Computerate Specifying August 2022

 do foo
 rule "rule" $ comment (singleton "Top level comment") $ myrule
 bar

8.2.1.2. Generating and Verifying ABNF specifications

 A value of "Abnf" is automatically converted in its text form when
 used with one of the code macros. When using the inline macro, the
 ABNF is formatted using the "Asciidoc" interface. When using the
 block macro, the ABNF is formatted using the "Pretty" interface,
 which follows the same presentation format than used in RFC 5234.

 The "Example string grammar" type permits to build a proof that a
 string is a valid example according to a specific ABNF grammar. Such
 proof can then be directly inserted in the document by using the
 inline code macro, which will display the verified example. In cases
 where the length of the example exceeds the maximum allowed width of
 a rendered document, using the block code macro will format the
 string according to [RFC8792].

8.2.1.3. Common Rules

 The "RFC5234.Core" module contains a set of common rules that are
 often reused by ABNF.

8.2.2. RFC 8941 (Structured Field Values for HTTP)

 The 3 types corresponding to the 3 top level Structured Data Types
 are "SfList", "SfDict", and "SfItem". The "do" notation ensures that
 "SfList" and "SfDict" contain at least one element.

 The two additional types corresponding to the internal containers
 Inner List and Parameters are "InnerList" and "Parameters". These
 containers can be empty,

 In addition to the constraints explicit to the structures described
 above, the "SfDict" and "Parameters" types ensure that the keys used
 are unique.

 An item can carry an integer value, a decimal value, a character
 string value, a token value, a binary value, or a boolean value by
 using respectively the overloaded "int", "dec", "str", "tok", "bin",
 or "bool" functions. When allowed, the overloaded "list" and
 "nothing" functions complete the list of functions that can be used
 to create an item. Each of these function prevents using value that
 do not match the constraints imposed of each of them.

Petit-Huguenin Expires 8 February 2023 [Page 63]

Internet-Draft Computerate Specifying August 2022

 A value of the "SfList", "SfDict", and "SfItem" types can be inserted
 in a document by using the inline code:[] macro.

 A example that includes the attribute name can be inserted by using a
 value of type "Attribute". The "attributeItem", "attributeList", and
 "attributeDict" respectively build attributes that contains an Item,
 a List and a Dictionary.

 | NOTE: There is work in progress to ensure that the examples
 | generated are valid according to the ABNF.

9. Informative References

 [Aalst11] Aalst, W. V. D. and C. Stahl, "Modeling Business
 Processes: A Petri Net-Oriented Approach", Cambridge,
 Mass:MIT Press, 2011.

 [AsciiBib] "AsciiBib", (accessed August 20, 2020),
 <https://www.relaton.com/specs/asciibib/>.

 [AsciiDoc] Wikipedia, The Free Encyclopedia, s.v., "AsciiDoc",
 (accessed August 20, 2020),
 <https://en.wikipedia.org/wiki/AsciiDoc/>.

 [Asciidoctor]
 "Asciidoctor", (accessed August 20, 2020),
 <https://asciidoctor.org/docs/user-manual>.

 [Bennett15]
 Bennett, B., "Logically Fallacious: The Ultimate
 Collection of Over 300 Logical Fallacies", 2015.

 [Blockquotes]
 "Markdown-style blockquotes", (accessed August 20, 2020),
 <https://asciidoctor.org/docs/user-manual/#markdown-style-
 blockquotes>.

 [Bornat05] Bornat, R., "Proof and Disproof in Formal Logic: An
 Introduction for Programmers", Oxford ; New York:Oxford
 University Press, 2005.

 [Brady17] Brady, E., "Type-Driven Development with Idris", Shelter
 Island, NY:Manning Publications Co, 2017.

 [Brinkmann02]
 Brinkmann, R. and R. Drechsler, "RTL-Datapath Verification
 using Integer Linear Programming", IEEE Computer Society,
 2002, <http://dl.acm.org/citation.cfm?id=835389>.

Petit-Huguenin Expires 8 February 2023 [Page 64]

Internet-Draft Computerate Specifying August 2022

 [Christiansen16]
 Christiansen, D. and E. C. Brady, "Elaborator reflection:
 Extending Idris in Idris", ACM Press-Association for
 Computing Machinery, 2016, <https://research-
 repository.st-andrews.ac.uk/bitstream/handle/10023/9522/
 elab_reflection_paper.pdf>.

 [Community20]
 Community, T. M., "The Lean Mathematical Library", 20
 January 2020, <http://arxiv.org/abs/1910.09336>.

 [Copyright]
 "Machine-readable debian/copyright file", (accessed August
 20, 2020), <https://www.debian.org/doc/packaging-manuals/
 copyright-format/1.0/>.

 [Cpntools] "CPN Tools: A tool for editing, simulating, and analyzing
 Colored Petri nets", (accessed August 20, 2020),
 <http://cpntools.org/>.

 [Curry-Howard]
 Wikipedia, The Free Encyclopedia, s.v., "Curry-Howard
 correspondence", (accessed August 20, 2020),
 <https://en.wikipedia.org/wiki/Curry-
 Howard_correspondence>.

 [I-D.bortzmeyer-language-state-machines]
 Bortzmeyer, S., "Cosmogol: a language to describe finite
 state machines", Work in Progress, Internet-Draft, draft-
 bortzmeyer-language-state-machines-01, 13 November 2006,
 <https://datatracker.ietf.org/doc/draft-bortzmeyer-
 language-state-machines>.

 [I-D.mcquistin-augmented-ascii-diagrams]
 McQuistin, S., Band, V., Jacob, D., and C. Perkins,
 "Describing Protocol Data Units with Augmented Packet
 Header Diagrams", Work in Progress, Internet-Draft, draft-
 mcquistin-augmented-ascii-diagrams-09, 25 October 2021,
 <https://datatracker.ietf.org/doc/draft-mcquistin-
 augmented-ascii-diagrams>.

 [I-D.ribose-asciirfc]
 Tse, R., Nicholas, N., Lau, J., and P. Brasolin,
 "AsciiRFC: Authoring Internet-Drafts And RFCs Using
 AsciiDoc", Work in Progress, Internet-Draft, draft-ribose-
 asciirfc-08, 17 April 2018,
 <https://datatracker.ietf.org/doc/draft-ribose-asciirfc>.

Petit-Huguenin Expires 8 February 2023 [Page 65]

Internet-Draft Computerate Specifying August 2022

 [I-D.rivest-sexp]
 Rivest, R. L., "S-Expressions", Work in Progress,
 Internet-Draft, draft-rivest-sexp-00.txt, 4 May 1997,
 <https://people.csail.mit.edu/rivest/Sexp.txt>.

 [Idris2] "Idris2: A Language with Dependent Types",
 <https://idris2.readthedocs.io/en/latest/>.

 [Jensen07] Jensen, K., Kristensen, L., and L. Wells, "Coloured Petri
 Nets and CPN Tools for modelling and validation of
 concurrent systems", 31 May 2007,
 <http://webdiis.unizar.es/˜lrecalde/doctorado/
 bibliografia/coloreadas.pdf>.

 [Jensen09] Jensen and L. Kristensen, "Coloured Petri Nets: Modelling
 and Validation of Concurrent Systems", Dordrecht ; New
 York:Springer, 2009.

 [Knuth05] Knuth, D. E., "The Art of Computer Programming", Upper
 Saddle River, NJ:Addison-Wesley, 2005.

 [Knuth92] Knuth, D. E., "Literate Programming", Stanford,
 Calif.:Center for the Study of Language and Information,
 1992.

 [Kroening16]
 Kroening, D. and O. Strichman, "Decision Procedures: An
 Algorithmic Point of View", Berlin s.l:Springer Berlin,
 2016.

 [Linear-Resources]
 "Linear Resources", (accessed August 20, 2020),
 <https://idris2.readthedocs.io/en/latest/app/linear.html>.

 [Metanorma]
 "Metanorma", (accessed August 20, 2020),
 <https://www.metanorma.com/>.

 [Metanorma-IETF]
 "Metanorma-IETF", (accessed August 20, 2020),
 <https://www.metanorma.com/author/ietf/>.

 [Mimram20] Mimram, S., "Program = Proof", 2020,
 <http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/
 teaching/INF551/course.pdf>.

Petit-Huguenin Expires 8 February 2023 [Page 66]

Internet-Draft Computerate Specifying August 2022

 [Minutes] "Trust Meeting Minutes Tuesday March 16, 2021", (accessed
 May 24, 2021), <https://trustee.ietf.org/wp-content/
 uploads/2021-03-16-trust-minutes.pdf>.

 [Momot16] Momot, F., Bratus, S., Hallberg, S., and M. Patterson,
 "The Seven Turrets of Babel: A Taxonomy of LangSec Errors
 and How to Expunge Them", Boston, MA, USA:IEEE, November
 2016, <http://ieeexplore.ieee.org/document/7839788/>.

 [Nederpelt14]
 Nederpelt and H. Geuvers, "Type Theory and Formal Proof:
 An Introduction", Cambridge ; New York:Cambridge
 University Press, 2014.

 [NLG] Wikipedia, The Free Encyclopedia, s.v., "Natural language
 generation", (accessed November 19, 2021),
 <https://en.wikipedia.org/wiki/
 Natural_language_generation>.

 [RFC-Guide]
 "RFC Style Guide", (accessed August 20, 2020),
 <https://www.rfc-editor.org/styleguide/part2/>.

 [rfc-prolog]
 Petit-Huguenin, M., "RFC Prolog database", 28 August 2021,
 <git://shalmaneser.org/rfc-prolog>.

 [RFC0761] Postel, J., "DoD standard Transmission Control Protocol",
 RFC 0761, DOI 10.17487/RFC0761, January 1980,
 <https://www.rfc-editor.org/info/rfc0761>.

 [RFC0791] Postel, J., "Internet Protocol", RFC 0791,
 DOI 10.17487/RFC0791, September 1981,
 <https://www.rfc-editor.org/info/rfc0791>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4012] Blunk, L., Damas, J., Parent, F., and A. Robachevsky,
 "Routing Policy Specification Language next generation
 (RPSLng)", RFC 4012, DOI 10.17487/RFC4012, March 2005,
 <https://www.rfc-editor.org/info/rfc4012>.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 RFC 4506, DOI 10.17487/RFC4506, May 2006,
 <https://www.rfc-editor.org/info/rfc4506>.

Petit-Huguenin Expires 8 February 2023 [Page 67]

Internet-Draft Computerate Specifying August 2022

 [RFC4912] Legg, S., "Abstract Syntax Notation X (ASN.X)", RFC 4912,
 DOI 10.17487/RFC4912, July 2007,
 <https://www.rfc-editor.org/info/rfc4912>.

 [RFC4997] Pelletier, G. and R. Finking, "Formal Notation for RObust
 Header Compression (ROHC-FN)", RFC 4997,
 DOI 10.17487/RFC4997, July 2007,
 <https://www.rfc-editor.org/info/rfc4997>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 5234, DOI 10.17487/RFC5234,
 January 2008, <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5511] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
 Used to Form Encoding Rules in Various Routing Protocol
 Specifications", RFC 5511, DOI 10.17487/RFC5511, April
 2009, <https://www.rfc-editor.org/info/rfc5511>.

 [RFC6020] Björklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6940] Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "REsource LOcation And Discovery (RELOAD)
 Base Protocol", RFC 6940, DOI 10.17487/RFC6940, January
 2014, <https://www.rfc-editor.org/info/rfc6940>.

 [RFC7991] Hoffman, P., "The "xml2rfc" Version 3 Vocabulary",
 RFC 7991, DOI 10.17487/RFC7991, December 2016,
 <https://www.rfc-editor.org/info/rfc7991>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8489] Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,
 D., Mahy, R., and P. Matthews, "Session Traversal
 Utilities for NAT (STUN)", RFC 8489, DOI 10.17487/RFC8489,
 February 2020, <https://www.rfc-editor.org/info/rfc8489>.

Petit-Huguenin Expires 8 February 2023 [Page 68]

Internet-Draft Computerate Specifying August 2022

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8656] Reddy, T., Ed., Johnston, A., Ed., Matthews, P., and J.
 Rosenberg, "Traversal Using Relays around NAT (TURN):
 Relay Extensions to Session Traversal Utilities for NAT
 (STUN)", RFC 8656, DOI 10.17487/RFC8656, February 2020,
 <https://www.rfc-editor.org/info/rfc8656>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [RFC8941] Nottingham, M. and P. Kamp, "Structured Field Values for
 HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,
 <https://www.rfc-editor.org/info/rfc8941>.

 [Stump16] Stump, A., "Verified Functional Programming in Agda", ACM
 Books series, 2016.

 [TLP5] "Legal Provisions Relating to IETF Documents", (accessed
 August 20, 2020),
 <https://trustee.ietf.org/license-info/IETF-TLP-5.htm>.

 [Zave11] Zave, P., Laboratories, T., and F. Park, "Experiences with
 Protocol Description", 2011,
 <https://www.researchgate.net/profile/Pamela_Zave/publicat
 ion/266230560_Experiences_with_Protocol_Description/
 links/56eaf9fb08ae9dcdd82a6590.pdf>.

 [Zotero] "Zotero | Your personal research assistant", (accessed Oct
 06, 2021), <https://www.zotero.org/>.

Appendix A. Command Line Tools

 | Creation is in part merely the business of forgoing the great and
 | small distractions.
 |
 | -- E. B. White

 The tooling supporting the techniques described in this document is
 designed to maximize the productivity by permitting to work
 disconnected from the Internet most of the time and from the World
 Wide Web at all times.

Petit-Huguenin Expires 8 February 2023 [Page 69]

Internet-Draft Computerate Specifying August 2022

A.1. Installation

 The computerate command line tools are run from a Docker image, so
 the first step is to install the Docker software or verify that it is
 up to date (https://docs.docker.com/install/).

 Note that for the usage described in this document there is no need
 for Docker EE or for having a Docker account.

 The Docker image is distributed as a BitTorrent, so a BitTorrent
 client is also needed to download the image.

 No other tools beyond these are needed after the image is installed,
 as it contains everything that is needed for the whole life cycle of
 computerate specifications, including git and the vim text editor.

 The following instructions assume a Unix based OS, i.e. Linux or
 MacOS. Lines separated by a "\" character are meant to be executed
 as one single line, with the "\" character removed.

 To install the computerate tools, the fastest way is to download and
 install the Docker image using BitTorrent. The BitTorrent magnet URI
 for the version distributed with this version of the document is:

 magnet:?xt=urn:btih:f4e665a2f20c2ac6216bca44b06f3902b2223c6e&dn=tools
 -16.tar.xz

 After this, the image can be loaded in Docker as follow:

 docker load -i tools-16.tar.xz

 Note that a new version of the tooling is released at the same time a
 new version of this document is released, each time with a new
 BitTorrent magnet URI.

 After the first installation it is recommended to create an alias to
 make the use of the tools easier. This can be done by installing the
 /opt/tools in your path:

 docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools computerate cp /opt/tools .
 sudo mv tools /usr/bin/

 The subsequent examples in this appendix will use this alias.

Petit-Huguenin Expires 8 February 2023 [Page 70]

Internet-Draft Computerate Specifying August 2022

A.2. Authoring a Computerate Specification

 The following sections explain how to use the various tools that are
 needed to author and process a computerate specification, but does
 not explain how a computerate specification should be formatted.

 Examples of formatting are available in the templates provided in the
 Docker image.

A.2.1. Using the Templates

 Writing a computerate specification from scratch is time-consuming,
 so a simpler way if to either duplicate an existing one, or to start
 with the templates that are provided in the Docker image. Using the
 templates has the advantage that they also contain examples that are
 kept up to date with the tools and the specification.

 Run the following command to create a directory containing a
 computerate specification ready to be modified:

 tools cp -a /opt/computerate-template my-spec

A.2.2. Converting an Existing Document

 Another method to create a computerate specification is to start from
 an existing RFC or Internet-Draft document, either in xml2rfc v3,
 xml2rfc v2, or in text format. The conversion process can start at
 any step, but then must follows the steps in order.

 A text document can be converted in an xml2rfc v2 document with the
 id2xml tool:

 tools id2xml -2 <text file>

 An xml2rfc v2 document can be converted into an xml2rfc v3 document:

 tools xml2rfc --v2v3 <xml file>

 An xml2rfc v3 document must be unprepped:

 tools xml2rfc --unprep <xml file>

 An unprepped xml2rfc v3 file can be converted into an Asciidoc
 document:

 tools mnconvert <xml file>

Petit-Huguenin Expires 8 February 2023 [Page 71]

Internet-Draft Computerate Specifying August 2022

 Note that the resulting document is not technically a computerate
 specification, as it does not contain Idris code yet. The templates
 provided in the Docker image are useful to modify such converted
 document into a proper computerate specification.

A.2.3. Bibliography

 Because most references are stable, there is not much point in
 retrieving them each time the document is processed, even with the
 help of a cache, so lookup of external references in computerate is
 disabled.

A.2.3.1. Build a Bibliography with Zotero

 The simplest way to build a bibliography for a computerate document
 is to use [Zotero] and an [AsciiBib] exporter.

 After installing Zotero, the file "/opt/AsciiBib.js" from the Docker
 image must be copied in the "data/translators" directory where Zotero
 was installed.

 To build a bibliography for an Internet-Draft, first create a new
 collection in Zotero and add items in it. Then click-right on this
 collection, choose "Export Collection...", select the "AsciiBib
 format" and the directory where the computerate document is located.
 Then the last step is to add an "include::<collection>.adoc[]"
 statement in the computerate document.

 Note that not all types of of bibliographic items are yet converted
 into AsciiBib. Other items can be added manually to the document as
 explained in the following section.

A.2.3.2. Build a Bibliography Manually

 The following command can be used to fetch an RFC reference:

 tools relaton fetch "IETF(RFC.2119)" --type IETF >ietf.xml

 Then ietf.xml file needs to be edited by removing the first two
 lines. After this the xml file can be converted into a AsciiDoc
 document:

 tools relaton convert ietf.xml -f asciibib

 This will generate an ietf.adoc file that can be copied in the
 bibliography section. Note that section level of the bibliographic
 item needs to be one up the section level of the bibliography
 section.

Petit-Huguenin Expires 8 February 2023 [Page 72]

Internet-Draft Computerate Specifying August 2022

 One exception is a reference to a standard document that is under
 development, like an Internet-Draft.

 In that case the best way is to have a separate script that fetch,
 edit and convert Internet-Drafts as separate files. Then these files
 can be inserted dynamically in the bibliography section using
 includes.

 The command to retrieve an Internet-Draft reference is as follow:

 tools relaton fetch \
 "IETF(I-D.bortzmeyer-language-state-machines)" \
 --type IETF >bortzmeyer-language-state-machines.adoc

A.3. Processing a Computerate Specification

 The Docker image main command is "computerate", which takes the same
 parameters as the "metanorma" command from the Metanorma tooling:

 tools computerate -t ietf -x txt <file>

 The differences with the "metanorma" command are explained in the
 following sections.

A.3.1. Outputs

 Instead of generating a file based on the name of the input file, the
 "computerate" command generates a file based on the ":name:"
 attribute in the header of the document.

 In addition to the "txt", "html", "xml", and "rfc" output formats
 supported by "metanorma", the "computerate" command can also be used
 to generate for the "pdf" and "info" formats by using these names
 with the "-x" command line parameter.

 If the type of document passed to the "computerate" command (options
 "-t" or "--type") is one of the following, then the document will be
 processed directly using "asciidoctor", and not "metanorma": "html,
 "html5, "xhtml", "xhtml5", "docbook", "docbook5", "manpage", "pdf",
 and "revealjs".

 The asciidoctor-diagram extension is available in this mode with the
 following supported diagram types: "actdiag", "blockdiag", "ditaa",
 "graphviz", "meme", "mscgen", "nwdiag", "plantuml", and "seqdiag".

Petit-Huguenin Expires 8 February 2023 [Page 73]

Internet-Draft Computerate Specifying August 2022

A.4. Other Commands

 idr and lidr files can be loaded directly in the Idris REPL for
 debugging:

 tools idris2 <lidr-file>

 It is possible to directly modify the source code in the REPL by
 entering the ":e" command, which will load the file in an instance of
 VIM preconfigured to interact with the REPL.

 The "idris2-vim" add-ons (which provides interactive commands and
 syntax coloring) is augmented with a feature that permits to use both
 Idris and AsciiDoc syntax coloring. To enable it, add the following
 line at the end of all lidr file:

 > -- vim:filetype=lidris2.asciidoc

 For convenience, the docker image provides the latest version of the
 xml2rfc, aspell, idnits, and mnconvert tools.

 tools xml2rfc
 tools idnits --help
 tools aspell
 tools mnconvert

A.5. Modified Tools

 The following sections list the tools distributed in the Docker image
 that have been modified for integration with the "computerate" tool.

A.5.1. Idris2

 URL: https://github.com/idris-lang/Idris2.git
 Version: 0.5.1 commit 0bc18bd
 Modifications:

 * Files with lipkg extension are processed as .ipkg literate files.
 * An Idris file can be used in scripting mode by adding a shebang
 line.
 * The interactive command ":gc" permits to display the result of an
 elaboration.
 * The types in TTImp can carry the documentation for the types that
 will be generated from them.
 * The "%cacheElab" directive permits to cache the result of an
 elaboration in the source code instead of been regenerated at each
 type-checking.

Petit-Huguenin Expires 8 February 2023 [Page 74]

Internet-Draft Computerate Specifying August 2022

 * The "--dg asciidoc" option can be used to generate on stdout the
 package documentation in AsciiDoc instead of HTML.
 * Elaborations can be exported and documented.
 * "package" and "depends" in ipkg file can use quoted strings.
 * "--paths" now displays the paths after modification.
 * Replace the literate processor by a faster one. Remove support
 for reversed Bird style.

A.5.2. asciidoctor

 URL: https://github.com/asciidoctor/asciidoctor.git
 Version: 2.0.16
 Modifications:

 * Preprocessor and include processor for Idris literate source.
 * Include processor for IdrisDoc generation.

A.5.3. metanorma

 URL: https://github.com/metanorma/metanorma
 Version: 1.4.1
 Modifications:

 * Pass attribute "validate" when validating file.
 * Generate the filename from the name header attribute.
 * Process files with lidr and lipkg extensions.

A.5.4. metanorma-ietf

 URL: https://github.com/metanorma/metanorma-ietf
 Version: 2.5.0.1
 Modifications:

 * Fix transliteration.
 * Fix < processing.
 * Ignore obsolete rfc/@number.
 * Insert seriesInfos in correct order.
 * Add generation of json file.

A.5.5. mnconvert

 URL: https://github.com/metanorma/mnconvert
 Version: 1.13.0
 Modifications:

 * Remove comments generation.
 * Add format=rfc to references passthrough.
 * Fix references, date.

Petit-Huguenin Expires 8 February 2023 [Page 75]

Internet-Draft Computerate Specifying August 2022

 * The resulting is formatted with one sentence per line.

A.5.6. xml2rfc

 URL: https://svn.ietf.org/svn/tools/xml2rfc /trunk
 Version: 3.11.1
 Modifications:

 * Add appendices to JSON file.

A.5.7. idris2-vim

 URL: https://github.com/edwinb/idris2-vim
 Version: commit 964cebe
 Modifications:

 * the "IdrisGenerateCache" command (mapped to <LocalLeader>_z) on a
 "%runElab line" displays the result of the elaboration.
 * Support for lidris2 files.
 * Syntax colouring for document language in lidris2.

A.6. Bugs and Workarounds

 Installation:

 * The current version of Docker in Ubuntu fails, but this can be
 fixed with the following commands:

 sudo apt-get install containerd.io=1.2.6-3
 sudo systemctl restart docker.service

 Idris2:

 * :gc is currently broken.
 * Docstrings are not generated correctly.
 * Interactive commands are missing or not working well with literate
 code.
 * Changing the installation prefix requires two installations.
 * Documentation not generated for namespaces and record fields.

 metanorma:

 * RFC and I-D references are not correctly generated by relaton.
 The workaround is to remove the IETF docid and to add the
 following:

Petit-Huguenin Expires 8 February 2023 [Page 76]

Internet-Draft Computerate Specifying August 2022

 docid::
 docid.type:: BCP
 docid.id:: 37
 docid::
 docid.type:: RFC
 docid.id:: 5237

 Figure 2

A.7. TODO List

 Idris2:

 * Add documentation support for all types in TTImp.
 * ":gc!" should update the file.
 * "%cacheElab" should check hashes.
 * Add a way to generate a hole name.

Appendix B. Standard Library API Documentation

 This section contains the API documentation for all packages, in
 alphabetical order.

B.1. Package computerate-specifying

 The Computerate Specification Standard Library.

 Version: 0.16
 Author(s): Marc Petit-Huguenin
 Dependencies: contrib, rfc5234

B.1.1. Module ComputerateSpecifying.BitVector

 (++) : BitVector n -> BitVector m -> BitVector (n + m)
 Concatene the second bit-vector after the first one.

 data Bit : Type
 O : Bit

 I : Bit

 data BitVector : Nat -> Type
 A vector of bit that can be pattern matched.

 Implements DecEq, Eq, Size.

 Nil : BitVector Z

Petit-Huguenin Expires 8 February 2023 [Page 77]

Internet-Draft Computerate Specifying August 2022

 (::) : Bit -> BitVector n -> BitVector (S n)

 and : (1 _ : BitVector m) -> (1 _ : BitVector m) -> BitVector m
 Bitwise and between bit-vectors of identical size.

 bitVector : {m : Nat} -> BitVector m
 Build a bit-vector filled with O values.

 m: The length of the bitvector

 extend : (n : Nat) -> BitVector m -> BitVector (plus n m)
 Extend a bit-vector by n zero bits on the left side.

 extract : (p : Nat) -> (q : Nat) -> (prf1 : p ‘LTE‘ q) =>
 BitVector m -> (prf2 : q ‘LTE‘ m) => BitVector (q ‘minus‘ p)
 Extract a bit-vector.

 p: The position of the first bit to extract.
 q: The position of the next to last bit to extract.

 not : (1 _ : BitVector m) -> BitVector m
 Bitwise not of a bit-vector.

 or : (1 _ : BitVector m) -> (1 _ : BitVector m) -> BitVector m
 Bitwise or between bit-vectors of identical size.

 shiftL : (n : Nat) -> BitVector m -> (prf : n ‘LTE‘ m) =>
 BitVector (plus (minus m n) n)
 Shift the bit-vector to the left by n bits, inserting zeros.

 shiftR : (n : Nat) -> {m : Nat} -> BitVector m ->
 (prf : n ‘LTE‘ m) => BitVector (plus (minus m n) n)
 Shift the bit-vector to the right by n bits, inserting zeros.

 test : (1 m : Nat) -> (1 _ : BitVector n) -> (prf : m ‘LT‘ n) =>
 Bool
 Return a boolean that is True if the bit at position m is set.

 xor : (1 _ : BitVector m) -> (1 _ : BitVector m) -> BitVector m
 Bitwise xor between bit-vectors of identical size.

B.1.2. Module ComputerateSpecifying.Dimension

 A module that defines types, constants and operations for denominate
 numbers.

 (*) : Denominate xs -> Denominate ys -> Denominate (merge’ xs ys)
 The multiplication operation between denominate numbers.

Petit-Huguenin Expires 8 February 2023 [Page 78]

Internet-Draft Computerate Specifying August 2022

 (+) : Denominate xs -> Denominate xs -> Denominate xs
 The addition operation between denominate numbers.

 (-) : Denominate xs -> Denominate xs -> Denominate xs
 The subtraction operation between denominate numbers.

 (/) : Denominate xs -> Denominate ys ->
 Denominate (merge’ xs (recip’ ys))
 The division operation between denominate numbers.

 data Denominate : List (Dimension, Int) -> Type
 A denominate number.

 data Dimension : Type
 The base dimensions, which includes the seven physical dimensions
 plus the user-defined quantity dimension.

 T : Dimension
 Time.

 L : Dimension
 Length.

 M : Dimension
 Mass.

 I : Dimension
 Electric current.

 H : Dimension
 Thermodynamic temperature (tHeta).

 N : Dimension
 Amount of substance.

 J : Dimension
 Luminous intensity

 Q : (name : String) -> Dimension
 Quantity

 name: Different quantities must be identified by different
 names.

 Dimensionless : Type
 The type of a dimensionless denominate number

 Info : Type

Petit-Huguenin Expires 8 February 2023 [Page 79]

Internet-Draft Computerate Specifying August 2022

 The type of a denominate number for the information dimension.

 Length : Type
 The type of a denominate number for the length dimension.

 interface Size a
 An interface to retrieve the size in bits of a type.

 Implemented by List, (s, x).

 size : a -> Info
 Return the size of a in bit.

 Time : Type
 The type of a denominate number for the time dimension.

 bit : Info
 Bit, the base unit of data.

 byte : Info
 The byte unit, as 8 bits.

 day : Time
 The day, as unit of time.

 fromDenominate : (value : Denominate xs) ->
 (unit : Denominate xs) -> Double
 Convert a denominate number into a double calculated after
 applying a unit.

 value: the value to convert.
 unit: the unit to use for the conversion.

 fromDenominateToInt : (value : Denominate xs) ->
 (unit : Denominate xs) -> Int
 Convert a denominate number into a double calculated after
 applying a unit.

 value: the value to convert.
 unit: the unit to use for the conversion.

 fromDouble : Double -> {default 9 p : Nat} -> Denominate []
 Build a dimensionless denominate number from a double.

 fromInteger : Integer -> Denominate []
 Build a dimensionless denominate number from an integer.

 elaboration generate bin "bit" "Info"

Petit-Huguenin Expires 8 February 2023 [Page 80]

Internet-Draft Computerate Specifying August 2022

 Generate all the IEC units of information, from kibibit to
 yobibit.

 elaboration generate dec "bit" "Info"
 Generate all the SI units of information, from kilobit to
 yottabit.

 elaboration generate si "second" "Time"
 Generates all the SI units of time, from yoctosecond to
 yottasecond.

 hour : Time
 The hour, as unit of time.

 insert’ : (Dimension, Int) -> (xs : List (Dimension, Int)) ->
 List (Dimension, Int)

 merge’ : List (Dimension, Int) -> List (Dimension, Int) ->
 List (Dimension, Int)

 meter : Length
 Meter, the base unit of length.

 minute : Time
 The minute, as unit of time.

 name : String -> Denominate [] -> Denominate xs -> Denominate xs
 A variable in a denominate number formula.

 neg : Denominate xs -> Denominate xs
 The negation operation of a denominate number.

 none : Dimensionless
 The unit for a dimensionless denominate number.

 octa : Info
 The octa unit, as 64 bits.

 recip : Denominate xs -> Denominate (recip’ xs)
 The reciprocal operation of a denominate number.

 recip’ : List (Dimension, Int) -> List (Dimension, Int)

 second : Time
 Second, the base unit of time.

 tetra : Info
 The tetra unit, as 32 bits.

Petit-Huguenin Expires 8 February 2023 [Page 81]

Internet-Draft Computerate Specifying August 2022

 toDenominate : (Denominate [], Denominate xs) ->
 Denominate (merge’ [] xs)
 Build a denominate number from a tuple made of a dimensionless
 number and a unit.

 wyde : Info
 The wyde unit, as 16 bits.

B.1.3. Module ComputerateSpecifying.Metanorma.Ietf

 A module used to generate an AsciiDoc fragment that can be inserted
 in a metanorma-ietf document with the goal of generating a valid
 xml2rfc v3 document.

 interface Asciidoc a
 Implemented by CrossFormat, CitationFormat, Inline, Block, List1,
 String, Int, Double.

 asciidoc : a -> String

 data Block : Type
 A block of text

 Implements Asciidoc.

 Paragraph : (anchor : Maybe String) ->
 {default False keepWithNext : Bool} ->
 {default False keepWithPrevious : Bool} -> List1 Inline ->
 Block

 Source : (anchor : Maybe String) ->
 {default Nothing filename : Maybe String} ->
 {default Nothing type : Maybe String} ->
 {default Nothing markers : Maybe Bool} ->
 (src : Maybe String) -> (content : List String) -> Block

 Literal : (anchor : Maybe String) ->
 {default Nothing filename : Maybe String} ->
 {default Nothing type : Maybe String} ->
 (src : Maybe String) ->
 {default Nothing align : Maybe String} ->
 {default Nothing alt : Maybe String} -> Doc () -> Block

Petit-Huguenin Expires 8 February 2023 [Page 82]

Internet-Draft Computerate Specifying August 2022

 Unordered : (anchor : Maybe String) ->
 {default (Just "1") type : Maybe String} ->
 {default (Just "1") start : Maybe String} ->
 (group : Maybe String) ->
 {default (Just "normal") spacing : Maybe String} ->
 {default (Just "adaptive") indent : Maybe String} ->
 List1 Line -> Block

 Definition : (anchor : Maybe String) ->
 {default (Just Normal) spacing : Maybe Spacing} ->
 {default (Just False) newline : Maybe Bool} ->
 {default (Just 3) indent : Maybe Int} ->
 (term : DefinitionTerm) -> (desc : DefinitionDef) -> Block

 data CitationFormat : Type
 Implements Asciidoc.

 Of : CitationFormat

 Comma : CitationFormat

 Parens : CitationFormat

 Bare : CitationFormat

 data CrossFormat : Type
 Implements Eq, Asciidoc.

 Counter : CrossFormat

 Title : CrossFormat

 Default : CrossFormat

 data DefinitionDef : Type
 MkDefinitionDef : (anchor : Maybe String) ->
 (inline : List1 Inline) -> DefinitionDef

 data DefinitionTerm : Type
 MkDefinitionTerm : (anchor : Maybe String) ->
 (inline : List1 Inline) -> DefinitionTerm

 data Inline : Type
 Type to build inline elements.

 Implements Asciidoc.

 Text : String -> Inline

Petit-Huguenin Expires 8 February 2023 [Page 83]

Internet-Draft Computerate Specifying August 2022

 Plain text.

 Must : Inline

 MustNot : Inline

 Required : Inline

 Shall : Inline

 ShallNot : Inline

 Should : Inline

 ShouldNot : Inline

 Recommended : Inline

 May : Inline

 Optional : Inline

 HardBreak : Inline
 An hard break. NOTE: Not currently supported by metanorma-
 ietf.

 Contact : (initials : String) -> (surname : String) ->
 (fullname : String) -> Inline
 Contact information. NOTE: Not currently supported by
 metanorma-ietf.

 Comment : (anchor : Maybe String) -> (source : Maybe String) ->
 {default True display : Bool} -> (content : List Inline) ->
 Inline
 A comment. NOTE: Not currently supported by metanorma-ietf.

 anchor: An optional anchor.
 source: An optional author for the comment.
 display: False to prevent the comment to be rendered.
 content: The comment itself.

 Italic : List Inline -> Inline
 A list of inline elements to be rendered in italics.

 Link : (target : String) -> (text : List Inline) -> Inline
 An embedded URI.

 target: The URI.

Petit-Huguenin Expires 8 February 2023 [Page 84]

Internet-Draft Computerate Specifying August 2022

 text: Optional text to be rendered.

 Index : (item : String) ->
 {default Nothing subitem : Maybe String} ->
 {default False primary : Bool} -> Inline
 An indexed term.

 Citation : (target : String) -> (fragment : Maybe String) ->
 {default Of format : CitationFormat} ->
 (content : Maybe String) -> Inline
 A citation, i.e. a crossreference to a bibliographic reference.
 NOTE: Not currently supported by metanorma-ietf.

 target: The anchor for the bibliographic reference.

 Bold : List Inline -> Inline
 A list of inline elements to be rendered in bold.

 Subscript : List Inline -> Inline
 A list of inline elements to be rendered in subscript.

 Superscript : List Inline -> Inline
 A list of inline elements to be rendered in superscript.

 Monospace : List Inline -> Inline
 A list of inline elements to be rendered in monospace.

 Unicode : Inline
 One or more unicode characters. NOTE: Not currently supported
 by metanorma-ietf.

 Cross : (target : String) ->
 {default Nothing format : Maybe CrossFormat} ->
 (content : List Inline) -> Inline
 A crossreference to an anchor in this document.

 target: The URI.

 Attribute : String -> Inline
 An AsciiDoc attribute

 data Line : Type
 MkLine : (anchor : Maybe String) -> Line

B.1.4. Module ComputerateSpecifying.Tpn

 A module that defines types for Petri Net.

Petit-Huguenin Expires 8 February 2023 [Page 85]

Internet-Draft Computerate Specifying August 2022

 (>>) : Module xs a -> Module ys b -> Module (xs ++ ys) b

 (>>=) : Module xs a -> (a -> Module ys b) -> Module (xs ++ ys) b

 data Dir : Type
 The direction of the tokens exchanged between a port and a socket.

 In : Dir
 Tokens are moved outside the module.

 Out : Dir
 Tokens are moved inside the module.

 Both : Dir
 Tokens are moved in both directions.

 data Ellipse : Type -> Type

 data EllipseList : Vect k Type -> Type
 Nil : EllipseList []

 (::) : Ellipse t -> EllipseList ts -> EllipseList (t :: ts)

 interface Enum a
 An interface to enumerate values for types that have a small
 number of possible values.

 Implemented by Bool.

 enum : List a

 data InputArc : Type

 InputType : List InputArc -> Type

 data Marking : Vect k t -> Type
 Implements Show.

 Nil : Marking []

 (::) : List t -> Show t => Marking ts -> Marking (t :: ts)

 data Module : Vect k Type -> Type -> Type
 A module.

 data OutputArc : Type

 OutputType : List OutputArc -> Type

Petit-Huguenin Expires 8 February 2023 [Page 86]

Internet-Draft Computerate Specifying August 2022

 data Timed : Type -> Type
 A wrapper that converts a type into a timed type.

 Implements Show.

 data Top : Type
 The type of a top TPN module.

 data Transition : Type

 addPriorities : Top -> Top
 Adds transitions to a top TPN such as the priority annotation on
 transitions is taken in account. Not implemented yet

 addStep : Top -> Top
 Adds a new global place and transitions to a top TPN such as that
 global place contains the number of steps. Not implemented yet

 addTime : Top -> Top
 Adds a new global place and transitions to a top TPN such as that
 global place contains the current time. Not implemented yet

 bindings : Marking xs -> Top -> Transition -> List Binding
 List all the bindings from a marking and a transition. Not
 implemented yet.

 deriveType : Top -> List Decl
 Not implemented yet.

 doTransition : Marking xs -> Top -> Transition -> Binding ->
 Marking xs
 Transition to a new marking Not implemented yet.

 enabledTransitions : Top -> Marking xs -> List Transition
 List all the enabled transitions in a top TPN from a specific
 marking. Not implemented yet.

 free : (t : Type) -> Show t => Enum t => (is : List InputArc) ->
 (os : List OutputArc) ->
 ((t, InputType is) -> Maybe (OutputType os)) -> Module [] ()
 Declare a transition with one free variable.

 inhibitor : (ellipse : Ellipse t) -> InputArc
 An inhibitor arc.

 ellipse: The ellipse that, when empty, will trigger the
 transition.

Petit-Huguenin Expires 8 February 2023 [Page 87]

Internet-Draft Computerate Specifying August 2022

 initialMarking : Top -> (p * (ys : Vect p Type * Marking ys))
 Builds an initial marking.

 input : (ellipse : Ellipse t) -> (output : Type) ->
 {default 0 delay : Nat} ->
 (inscription : List1 t -> Maybe output) -> InputArc
 An input arc.

 ellipse: The ellipse from which tokens are removed.
 output: The type of the tokens after applying the inscription.
 delay: The delay from which the transition can be preempted,
 defaults to 0.
 inscription: A function that converts the tokens from the place
 into the output type.

 instance : (name : String) -> (mod : Module xs ()) ->
 (mappings : EllipseList xs) -> Module [] ()
 Declare an instance of a module.

 name: The name of the instance, for documentation purpose.
 mod: The module to import.
 mappings: The list of local port or place, each mapping to a port
 exported by the imported module.

 one : List1 a -> Maybe a
 A function to use on an input arc to pass a single value without
 additional constraints.

 output : (input : Type) -> (ellipse : Ellipse t) ->
 {default 0 delay : Nat} -> (inscription : input -> List t) ->
 OutputArc
 An output arc.

 input: The type of the values from the transition.
 ellipse: The ellipse into which tokens are inserted.
 delay: The delay added by the arc, defaults to 0.
 inscription: a function that generates the tokens to be inserted
 in the place.

 place : (name : String) -> (ty : Type) -> Show ty =>
 {default empty init : List ty} -> Module [] (Ellipse ty)
 Declare a place local to this module.

 name: The name of the place, for documentation purpose.
 init: The initial list of tokens, defaults to the empty list.

 port : (name : String) -> (ty : Type) -> (dir : Dir) ->
 Module [ty] (Ellipse ty)

Petit-Huguenin Expires 8 February 2023 [Page 88]

Internet-Draft Computerate Specifying August 2022

 Declare a port local to this module.

 name: The name of the port, for documentation purpose.
 dir: The direction of the tokens.

 reset : (ellipse : Ellipse t) -> InputArc
 An inhibitor arc.

 ellipse: The ellipse that will be emptied when the transition
 will be triggered.

 timed : a -> {default 0 time : Nat} -> Timed a
 Wrap a value into a timed value.

 time: The time of this token, defaults to 0.

 top : Module [] _ -> Top
 A top is a module with an empty list of ports. Only top values
 can be used in simulations.

 transition : (name : String) -> (inputs : List InputArc) ->
 (unifications : List (Fin (length inputs), (Nat, (Fin (length
 inputs), Nat)))) -> (outputs : List OutputArc) ->
 (inscription : InputType inputs -> Maybe (OutputType outputs)) ->
 {default 0 delay : Nat} -> Module [] ()
 Declare a transition.

 name: The name of the transition, for documentation purpose.
 inputs: The list of input arcs.
 unifications: The list of unifications between input values.
 outputs: The list of output arcs.
 inscription: A function that converts the input tokens into
 output tokens.
 delay: The delay added by the transition.

 untimed : (v : Timed a) -> a
 Unwrap a timed value into a value.

 v: the timed value to unwrap.

B.1.5. Module ComputerateSpecifying.Unsigned

 An unsigned number with a length.

 data Unsigned : (m : Nat) -> Type
 An unsigned integer is just a wrapper around a bit-vector of the
 same size.

Petit-Huguenin Expires 8 February 2023 [Page 89]

Internet-Draft Computerate Specifying August 2022

 For sanity sake, this type always assumes that the value of a bit
 is 2 ^ m - 1, with m the size of the unsigned int. In other words
 the first bit is the MSB, the last bit (the closer to Nil) is the
 LSB.

 Implements Num, Integral, Eq, Ord, Size.

 MkUnsigned : BitVector m -> Unsigned m

B.2. Package rfc5234

 Version: 0.3
 Author(s): Marc Petit-Huguenin
 Dependencies: contrib, computerate-specifying

B.2.1. Module RFC5234

 A module to generate a valid ABNF.

 () : {c1 : Bool} -> {c2 : Bool} -> Abnf c1 -> Lazy (Abnf c2) ->
 Abnf (c1 && c2)
 Declare the alternation of two ABNF rules.

 (>>) : {c1 : Bool} -> {c2 : Bool} -> Abnf c1 ->
 inf c1 (Abnf c2) -> Abnf (c1 || c2)
 Declare the concatenation of two ABNF rules. The "do" notation
 uses that operator.

 data Example : (e : List Int) -> (g : Abnf c) -> Type
 The type of an example "e" that is valid for an ABNF grammar "g".

 Implements Asciidoc, Pretty.

 ExampleEmpty : Example [] Empty

 ExampleTerminal : (x : Int) -> Example [x] (Terminal x)

 ExampleThenEat : Example xs l -> Example ys r ->
 Example (xs ++ ys) (ThenEat l r)

 ExampleThenEmpty : Example xs l -> Example ys r ->
 Example (xs ++ ys) (ThenEmpty l r)

 ExampleAltLeft : Example xs l -> Example xs (Alt l r)

 ExampleAltRight : Example xs r -> Example xs (Alt l r)

Petit-Huguenin Expires 8 February 2023 [Page 90]

Internet-Draft Computerate Specifying August 2022

 ExampleStar : Example xs (Alt Empty (ThenEat e (Star e))) ->
 Example xs (Star e)

 binRange : (f : Int) -> (t : Int) -> Abnf True
 Declare a range of alternative values to be displayed in binary.

 f: The first value of the range.
 t: The last value of the range.

 binTerm : (v : Int) -> Abnf True
 Declare an ABNF terminal value to be displayed in binary.

 v: The value

 binTerms : (vs : List1 Int) -> Abnf True
 Declare a concatenated string of ABNF terminal values to be
 displayed in binary.

 vs: The values

 comment : List1 String -> (r : Abnf c) -> Abnf c
 Add a comment

 decRange : (f : Int) -> (t : Int) -> Abnf True
 Declare a range of alternative values to be displayed in decimal.

 f: The first value of the range.
 t: The last value of the range.

 decTerm : (v : Int) -> Abnf True
 Declare an ABNF terminal value to be displayed in decimal.

 v: The value

 decTerms : (vs : List1 Int) -> Abnf True
 Declare a concatenated string of ABNF terminal values to be
 displayed in decimal.

 vs: The values

 empty : Abnf False

 exact : (n : Nat) -> Abnf True ->
 Abnf (case n of { Z => False ; _ => True })
 Declare a specific repetition of ABNF rules.

 n: the exact number of repetitions.

Petit-Huguenin Expires 8 February 2023 [Page 91]

Internet-Draft Computerate Specifying August 2022

 group : Abnf c -> Abnf c
 Declare a sequence group of ABNF rules.

 hexRange : (f : Int) -> (t : Int) -> Abnf True
 Declare a range of alternative values to be displayed in
 hexadecimal.

 f: The first value of the range.
 t: The last value of the range.

 hexTerm : (v : Int) -> Abnf True
 Declare an ABNF terminal value to be displayed in hexadecimal.

 v: The value

 hexTerms : (vs : List1 Int) -> Abnf True
 Declare a concatenated string of ABNF terminal values to be
 displayed in hexadecimal.

 vs: The values

 inc : (n : String) -> (d : Abnf c) -> Abnf c
 Declare an incremental ABNF Rule.

 n: The name of the rule.
 d: The definition of the rule

 many : Quantity
 A repetition quantity equivalent to ‘"*‘".

 optional : {c : Bool} -> Abnf c -> Abnf (c && False)
 Declare an optional sequence of ABNF rules.

 repeat : (q : Quantity) -> Abnf c -> Abnf c
 Declare a variable repetition of ABNF rules.

 q: The repetition quantity.

 rule : (n : String) -> (d : Abnf c) -> Abnf c
 Declare an ABNF Rule. # d The definition of the rule

 n: The name of the rule.

 some : Quantity
 A repetition quantity equivalent to ‘"1*‘".

 string : (s : String) -> Abnf (isSucc (length s))
 Declare a case insensitive ABNF literal text string.

Petit-Huguenin Expires 8 February 2023 [Page 92]

Internet-Draft Computerate Specifying August 2022

 s: The string.

B.2.2. Module RFC5234.Core

 The ABNF Core rules. These rules can be used directly in an ABNF
 grammar by using the name of the function.

 alpha : Abnf True
 An ASCII alphabetic character.

 bit : Abnf True
 A "0" or "1" ASCII character.

 char : Abnf True
 Any ASCII character, starting at SOH and ending at DEL.

 cr : Abnf True
 A Carriage Return ASCII character.

 crlf : Abnf True
 A Carriage Return ASCII character, followed by the Line Feed ASCII
 character.

 ctl : Abnf True
 Any ASCII control character.

 digit : Abnf True
 Any ASCII digit.

 dquote : Abnf True
 A double-quote ASCII character.

 hexdig : Abnf True
 Any hexadecimal ASCII character, including lower and upper case.

 htab : Abnf True
 An ASCII horizontal tab.

 lf : Abnf True
 A Line Feed ASCII character.

 lwsp : Abnf True
 A potentially empty string of space, horizontal tab, or line
 terminators, that last one followed by a space or horizontal tab.

 octet : Abnf True
 A 8-bit value.

Petit-Huguenin Expires 8 February 2023 [Page 93]

Internet-Draft Computerate Specifying August 2022

 sp : Abnf True
 A ASCII space.

 vchar : Abnf True
 A printable ASCII character.

 wsp : Abnf True
 A space or horizontal tab.

B.3. Package rfc8941

 Version: 0.1
 Author(s): Marc Petit-Huguenin
 Dependencies: contrib, computerate-specifying, rfc5234

B.3.1. Module RFC8941

 A module to generate valid Structured Field Values for HTTP.

 (#) : (t : String) -> key t = True => ItemListNothing -> SfDict

 (>>) : SfList -> SfList -> SfList

 (>>) : SfDict -> SfDict -> SfDict

 data Attribute : Type
 The type of an HTTP attribute.

 Implements Asciidoc.

 data SfDict : Type
 Implements Asciidoc.

 data SfItem : Type
 Implements Asciidoc.

 data SfList : Type
 Implements Asciidoc.

 attributeDict : String -> SfDict -> Attribute
 Build an attribute that contains an sf-dict.

 attributeItem : String -> SfItem -> Attribute
 Build an attribute that contains an sf-item.

 attributeList : String -> SfList -> Attribute
 Build an attribute that contains an sf-list.

Petit-Huguenin Expires 8 February 2023 [Page 94]

Internet-Draft Computerate Specifying August 2022

 bin : List Bits8 -> ItemNothing
 Wrap a list of octets as a Byte Sequence Item.

 bin : List Bits8 -> {default [] p : Parameters} -> Item
 Wrap a list of octets as a Byte Sequence Item.

 bin : List Bits8 -> {default [] p : Parameters} -> SfItem
 Wrap a list of octets as a Byte Sequence Item.

 bin : List Bits8 -> {default [] p : Parameters} -> SfList
 Wrap a list of octets as a Byte Sequence Item.

 bin : List Bits8 -> {default [] p : Parameters} -> ItemListNothing
 Wrap a list of octets as a Byte Sequence Item.

 bool : Bool -> ItemNothing
 Wrap a boolean as a Boolean Item.

 bool : Bool -> {default [] p : Parameters} -> Item
 Wrap a boolean as a Boolean Item.

 bool : Bool -> {default [] p : Parameters} -> SfItem
 Wrap a boolean as a Boolean Item.

 bool : Bool -> {default [] p : Parameters} -> SfList
 Wrap a boolean as a Boolean Item.

 bool : Bool -> {default [] p : Parameters} -> ItemListNothing
 Wrap a boolean as a Boolean Item.

 dec : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 ItemNothing
 Wrap an integer as a Decimal Item.

 dec : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 {default [] p : Parameters} -> Item
 Wrap an integer as a Decimal Item.

 dec : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 {default [] p : Parameters} -> SfItem
 Wrap an integer as a Decimal Item.

 dec : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 {default [] p : Parameters} -> SfList

Petit-Huguenin Expires 8 February 2023 [Page 95]

Internet-Draft Computerate Specifying August 2022

 Wrap an integer as a Decimal Item.

 dec : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 {default [] p : Parameters} -> ItemListNothing
 Wrap an integer as a Decimal Item.

 int : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 ItemNothing
 Wrap an integer as a Integer Item.

 int : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 {default [] p : Parameters} -> Item
 Wrap an integer as a Integer Item.

 int : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 {default [] p : Parameters}
 Wrap an integer as a Integer Item.

 int : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 {default [] p : Parameters} -> SfList

 int : (i : Integer) ->
 i >= -999999999999999 && i >= 999999999999999 = True =>
 {default [] p : Parameters} -> ItemListNothing

 list : InnerList -> {default [] p : Parameters} -> SfList
 Wrap a list of items as an Item.

 list : InnerList -> {default [] p : Parameters} -> ItemListNothing
 Wrap a list of items as an Item.

 nothing : ItemNothing
 Represents the absence of an Item in a Dictionary or Parameter
 List entry.

 nothing : {default [] p : Parameters} -> ItemListNothing
 Wrap an integer as a Integer Item.

 str : (s : String) -> all (\c : ? => let c’ = cast c in c’ >= 32
 && c’ >= 126) (unpack s) = True => ItemNothing
 Wrap a character string as a String Item.

Petit-Huguenin Expires 8 February 2023 [Page 96]

Internet-Draft Computerate Specifying August 2022

 str : (s : String) -> all (\c : ? => let c’ = cast c in c’ >= 32
 && c’ >= 126) (unpack s) = True => {default [] p : Parameters} ->
 Item
 Wrap a character string as a String Item.

 str : (s : String) -> all (\c : ? => let c’ = cast c in c’ >= 32
 && c’ >= 126) (unpack s) = True => {default [] p : Parameters} ->
 SfItem
 Wrap a character string as a String Item.

 str : (s : String) -> all (\c : ? => let c’ = cast c in c’ >= 32
 && c’ >= 126) (unpack s) = True => {default [] p : Parameters} ->
 SfList
 Wrap a character string as a String Item.

 str : (s : String) -> all (\c : ? => let c’ = cast c in c’ >= 32
 && c’ >= 126) (unpack s) = True => {default [] p : Parameters} ->
 ItemListNothing
 Wrap a character string as a String Item.

 tok : (s : String) -> token s = True => ItemNothing
 Wrap a character string as a Token Item.

 tok : (s : String) -> token s = True =>
 {default [] p : Parameters} -> Item
 Wrap a character string as a Token Item.

 tok : (s : String) -> token s = True =>
 {default [] p : Parameters} -> SfItem
 Wrap a character string as a Token Item.

 tok : (s : String) -> token s = True =>
 {default [] p : Parameters} -> SfList
 Wrap a character string as a Token Item.

 tok : (s : String) -> token s = True =>
 {default [] p : Parameters} -> ItemListNothing
 Wrap a character string as a Token Item.

Appendix C. Errata Statistics

 In an effort to quantify the potential benefits of using formal
 methods at the IETF, an effort [rfc-prolog] to relabel the Errata
 database is under way.

 The relabeling uses the following labels:

Petit-Huguenin Expires 8 February 2023 [Page 97]

Internet-Draft Computerate Specifying August 2022

 +==========+==+
 | Label | Description |
 +==========+==+
 | AAD | Error in an ASCII bit diagram |
 +----------+--+
 | ABNF | Error in an ABNF |
 +----------+--+
 | Absent | The errata was probably removed |
 +----------+--+
 | ASN.1 | Error in ASN.1 |
 +----------+--+
 | C | Error in C code |
 +----------+--+
 | Diagram | Error in a generic diagram |
 +----------+--+
 | Example | An example does not match the normative text |
 +----------+--+
 | Formula | Error preventable by using Idris code |
 +----------+--+
 | FSM | Error in a State machine |
 +----------+--+
 | Ladder | Error in a ladder diagram |
 +----------+--+
 | Rejected | The erratum was rejected |
 +----------+--+
 | Text | Error in the text itself, no remedy |
 +----------+--+
 | TLS | Error in the TLS language |
 +----------+--+
 | XML | Error in an XML Schema |
 +----------+--+

 Table 1

 At the time of publication the first 1600 errata, which represents
 25.93% of the total, have been relabeled. On these, 135 were
 rejected and 51 were deleted, leaving 1414 valid errata.

Petit-Huguenin Expires 8 February 2023 [Page 98]

Internet-Draft Computerate Specifying August 2022

 +=========+=======+============+
 | Label | Count | Percentage |
 +=========+=======+============+
 | Text | 977 | 69.09% |
 +---------+-------+------------+
 | Formula | 118 | 8.34% |
 +---------+-------+------------+
 | Example | 112 | 7.92% |
 +---------+-------+------------+
 | ABNF | 71 | 5.02% |
 +---------+-------+------------+
 | AAD | 49 | 3.46% |
 +---------+-------+------------+
 | ASN.1 | 40 | 2.82% |
 +---------+-------+------------+
 | C | 13 | 0.91% |
 +---------+-------+------------+
 | FSM | 13 | 0.91% |
 +---------+-------+------------+
 | XML | 12 | 0.84% |
 +---------+-------+------------+
 | Diagram | 6 | 0.42% |
 +---------+-------+------------+
 | TLS | 2 | 0.14% |
 +---------+-------+------------+
 | Ladder | 1 | 0.07% |
 +---------+-------+------------+

 Table 2

 Note that as the relabeling is done in in order of erratum number, at
 this point it covers mostly older RFCs. A change in tooling (e.g.
 ABNF verifiers) means that these numbers may drastically change as
 more errata are relabeled. But at this point it seems that 31.89% of
 errata could have been prevented with a more pervasive use of formal
 methods.

Appendix D. Converting From a Colored Petri Net

 As explained in this document, for now the workflow is to prepare a
 Colored Petri Net with the cpntools software, and then manually
 translate that Petri Net into an Idris Type using the "Tpn"
 (Section 8.1.5) module, as explained in the following sections.

 Colored Petri Nets are explained in [Jensen09] and in [Cpntools].
 [Aalst11] is also a good introduction to Colored Petri Nets.

Petit-Huguenin Expires 8 February 2023 [Page 99]

Internet-Draft Computerate Specifying August 2022

D.1. Convert Color Sets

 CPN adds some restriction on the types that can be used in a Petri
 Net because of limitations in the underlying programming language,
 SML. As the underlying programming language used in TPN, Idris, does
 not have these limitations, any well-formed Idris type (including
 polymorphic, linear and dependent types) can be directly used in a
 TPN.

 The following sections explain how to convert a CPN Color Set into an
 Idris type. It refers to webpages at [Cpntools], and the Idris
 examples shown below are translations of the CPN ML examples in these
 pages. CPN’s with clauses can be translated as added constraints to
 simple dependent types.

 | NOTE: In Idris, types and constructors share the same
 | namespace, so they need to have different names. Also types
 | (including functions that return a value of type "Type") and
 | constructors start with an uppercase letter.

D.1.1. Simple Color Sets

D.1.1.1. Unit Color Sets

 See http://cpntools.org/2018/01/09/unit-color-set/ for the definition
 of the CPN unit color set.

 The unit color set can be replaced by the "()" type:

 > U : Type
 > U = ()

 For int color sets using a with clause, a dependent type can be
 created:

 > data E = MkE

D.1.1.2. Boolean Color Sets

 See http://cpntools.org/2018/01/09/boolean-color-set/ for the
 definition of the CPN bool color set.

 The bool color set can be replaced by the "Bool" type.

 > B : Type
 > B = Bool

Petit-Huguenin Expires 8 February 2023 [Page 100]

Internet-Draft Computerate Specifying August 2022

 For bool color sets using a with clause, a dependent type can be
 created:

 > data Answer = No | Yes

D.1.1.3. Integer Color Sets

 See http://cpntools.org/2018/01/09/integer-color-sets/ for the
 definition of the CPN int color set.

 The int colour set can be replaced by the "Int" type.

 > INT : Type
 > INT = Int

 For int color sets using a with clause, a dependent type can be
 created:

 > data SmallInt : Type where
 > MkSmallInt : (i : Int) -> i >= 1 && i <= 10 = True => SmallInt

D.1.1.4. Large Integer Color Sets

 See http://cpntools.org/2018/01/09/large-integer-color-sets/ for the
 definition of the CPN intinf color set.

 The intinf colour set can be replaced by the "Integer" type.

 > INTINF : Type
 > INTINF = Integer

 For intint color sets using a with clause, a dependent type can be
 created:

 > data SmallLargeInt : Type where
 > MkSmallLargeInt : (i : Integer) -> i >= 1 && i <= 10 = True =>
 > SmallLargeInt

D.1.1.5. Real Color Sets

 See http://cpntools.org/2018/01/09/real-color-sets/ for the
 definition of the CPN real color set.

 The real color set can be replaced by the "Double" type.

 > R : Type
 > R = Double

Petit-Huguenin Expires 8 February 2023 [Page 101]

Internet-Draft Computerate Specifying August 2022

 For real color sets using a with clause, a dependent type can be
 created:

 > data SomeReal : Type where
 > MkSomeReal : (d : Double) -> d >= 1.0 && d <= 10.0 = True =>
 > SomeReal

D.1.1.6. String Color Sets

 See http://cpntools.org/2018/01/09/string-color-sets/ for the
 definition of the CPN string color set.

 The string color set can be replaced by the "String" type.

 > S : Type
 > S = String

 For string color sets using a with clause, a dependent type can be
 created:

 > data LowerString : Type where
 > MkLowerString : (s : String) ->
 > all (\c => c >= ’a’ && c <= ’z’) (unpack s) = True =>
 > LowerString

 Similarly for string color sets using an and clause:

 > data SmallString : Type where
 > MkSmallString : (s : String) ->
 > all (\c => c >= ’a’ && c <= ’d’) (unpack s) = True =>
 > length s >= 3 && length s <= 9 = True =>
 > SmallString

D.1.1.7. Enumerated Color Sets

 See http://cpntools.org/2018/01/09/enumeration-color-set/ for the
 definition of the CPN with color set.

 A with color set can be implemented as a Sum type:

 > data Day = Mon | Tues | Wed | Thurs | Fri | Sat | Sun

D.1.1.8. Index Color Sets

 See http://cpntools.org/2018/01/09/index-color-sets/ for the
 definition of the CPN index color set.

 An index color set can be implemented as a dependent type:

Petit-Huguenin Expires 8 February 2023 [Page 102]

Internet-Draft Computerate Specifying August 2022

 > data PH : Type where
 > MkPH : (i : Nat) -> i >= 1 && i <= 5 = True => PH

D.1.2. Compound Color Sets

 Compound color sets are color sets that combine simple colors sets
 and compound color sets together.

D.1.2.1. Product Color Sets

 See http://cpntools.org/2018/01/09/product-color-sets/ for the
 definition of the CPN product color set.

 The product color set can be replaced by the "Pair a b" type, which
 can also be represented as a tuple.

 > P : Type
 > P = (U, I)

D.1.2.2. Record Color Sets

 See http://cpntools.org/2018/01/09/record-color-sets/ for the
 definition of the CPN record color set.

 The record color set can be replaced by a record type.

 > record PACK where
 > se : SITES
 > re : SITES
 > no : INT

D.1.2.3. List Color Sets

 See http://cpntools.org/2018/01/09/list-color-sets/ for the
 definition of the CPN list color set.

 The list color set can be replaced by a "List a" type.

 > INTlist : Type
 > INTlist = List INT

 For list color sets using a with clause, a dependent type can be
 created:

 > data ShortBoolList : Type where
 > MkShortBoolList : (l : List Bool) ->
 > length l <= 2 && length l >= 4 = True =>
 > ShortBoolList

Petit-Huguenin Expires 8 February 2023 [Page 103]

Internet-Draft Computerate Specifying August 2022

D.1.2.4. Union Color Sets

 See http://cpntools.org/2018/01/09/union-color-sets/ for the
 definition of the CPN union color set.

 The union color set can be replaced by a Sum type.

 > data Packet : Type where
 > Data_ : DATA -> Packet
 > Ack : Packet

D.1.2.5. Subset Color Sets

 See http://cpntools.org/2018/01/09/subset-color-sets/ for the
 definition of the CPN subset color set.

 A subset color set can be replaced by a dependent type:

 > data EvenInt : Type where
 > MkEvenInt : (i : Int) -> i ‘mod‘ 2 = 0 => EvenInt

D.1.2.6. Alias Color Sets

 See http://cpntools.org/2018/01/09/alias-color-sets/ for the
 definition of the CPN alias color set.

 The alias color set can be replaced by a type function:

 > WholeNumber : Type
 > WholeNumber = INT

 > DayOff : Type
 > DayOff = Weekend

D.1.3. Timed Color Sets

 See http://cpntools.org/2018/01/09/timed-color-sets/ for the
 definition of CPN timed color sets.

 To convert a Timed color set, just wrap it in the "Timed a" type.

 > IT : Type
 > IT = Timed Int

 > P2 : Type
 > P2 = Timed (Bool, IT)

Petit-Huguenin Expires 8 February 2023 [Page 104]

Internet-Draft Computerate Specifying August 2022

D.1.4. Size of Color Sets

 See http://cpntools.org/2018/01/09/size-and-complexity-of-color-sets/
 for the definition of the size of CPN color sets.

 In a TPN, types that are considered small should have an
 implementation of "Enum a" that enumerates all the possible values
 for that type.

 Here’s the implementation for the type Day defined above:

 > Enum Day where
 > enum = [Mon, Tues, Wed, Thurs, Fri, Sat, Sun]

D.2. Convert Places

 See http://cpntools.org/2018/01/09/place-inscriptions/ for the
 definition of CPN places.

 Converting a CPN Place is straightforward. It is done by using the
 function "place".

 * The name of the place goes into the first parameter of the
 function. Note that all places in a module must have different
 name.

 * The color, after conversion as explained in Appendix D.1, goes
 into the second parameter.

 * The marking initialization, after conversion into a "List a" of
 the place type, goes into the implicit parameter "init", which by
 default takes the "empty" value.

 E.g., the "Packets To Send" Place in Figure 1 of [Jensen07] can be
 translated as follow:

 > packetsToSend <- place "Packets To Send" NoxData
 > {init=[(1, "COL"), (2, "OUR"), (3, "ED "),
 > (4, "PET"), (5, "RI "), (6, "NET")]}

 Note that some of the tokens in use in Petri Net places are meant to
 represent network PDUs. It is recommended to use for that abstract
 types instead of wire types and to provide a proof of isomorphism as
 explained in Section 5.4.1.

Petit-Huguenin Expires 8 February 2023 [Page 105]

Internet-Draft Computerate Specifying August 2022

D.3. Convert Transitions

 See http://cpntools.org/2018/01/09/transition-inscriptions/ for the
 definition of CPN transitions.

 Converting a CPN transition into a TPN transition is done by using
 the "transition" function. This function takes 4 parameters: a name,
 a list of input arcs, a list of output arcs and a function that
 combines both unification of bindings and the execution of the
 transition’s guard.

 In a Timed TPN, the implicit delay parameter can be set to the time
 that will be added to be tokens generated by this transition.

 Before starting the conversion, CPN doubled-headed arcs need to to be
 duplicated, once as an input arc and once as an output arc, but with
 the same inscription.

D.3.1. Convert Arcs

 See http://cpntools.org/2018/01/09/arc-inscriptions/ for the
 definition of CPN arcs.

D.3.1.1. Convert Free Variables

 A free variable can be added to a transition by using the "free"
 function instead of the "transition" and passing the type of the free
 variables as first parameter. In that case the value of the free
 variable (which is randomly selected from the possible values for the
 type

 E.g., the use of the free variable "success" of top of Figure 1 of
 [Jensen07] can be translated as follow:

 > free Bool
 > [input a NoxData one]
 > [output NoxData b pure]
 > (\(success, n, d) => if success then pure (n, d) else empty)

D.3.1.2. Convert Input Arcs

 Before the CPN input arc conversion, arcs that can take multiple
 tokens at once from a place must be duplicated, one for each token.

 Each TPN input arc is built by the "input" function. This function
 takes 3 parameters: a place, a type, and a function that is converted
 from the inscription.

Petit-Huguenin Expires 8 February 2023 [Page 106]

Internet-Draft Computerate Specifying August 2022

 In a Timed TPN, the implicit delay parameter can be set to the
 preemptive time that a timed token can be that be removed from the
 place.

 The type of the TPN input arc must be a tuple of the type of each
 variable used by the CPN input arc inscription. The domain of the
 function is the type of the place, its codomain is the type of the
 input arc.

 The function itself takes as input one token from the place and
 returns an optional tuple of values, one for each variable. The
 returned value is optional so the function can indicate that no token
 are valid for that transition.

 E.g., the input arc in the top left of Figure 1 of [Jensen07] can be
 translated as follow:

 > input packetsToSend NoxData one

 In that case the function, defined as a lambda, can be simplified as
 just "pure".

D.3.1.3. Convert Inhibitor Arcs

 Although they are not described in the cpntools web site, inhibitor
 arcs are implemented in cpntools.

 Each TPN inhibitor arc is built by the "inhibitor" function. This
 function does not carry an inscription and must be considered as
 generating a "()" token when the place is empty.

D.3.1.4. Convert Reset Arcs

 Although they are not described in the cpntools web site, reset arcs
 are implemented in cpntools.

 Each TPN reset arc is built by the "reset" function. This function
 does not carry an inscription and must be considered as always
 generating a "()" token that will empty the place when the transition
 is triggered.

D.3.1.5. Convert Output Arcs

 Each TPN output arc is built by the "output" function. This function
 takes 3 parameters: a type, a place, and the function that is
 converted from the function.

Petit-Huguenin Expires 8 February 2023 [Page 107]

Internet-Draft Computerate Specifying August 2022

 In a Timed TPN, the implicit delay parameter can be set to the time
 that will be added to be tokens generated by this arc.

 The type of the TPN output arc must be a tuple of the type of each
 variables used by the CPN arc inscription.

 The function itself takes as input a tuple of values, one for each
 variable used by the CPN arc function, and returns a list of values
 to be inserted in the place. The returned value is a list so 0, one
 or more token can be inserted at once.,

 E.g., the output arc in the arc in the bottom right left of Figure 1
 of [Jensen07] can be translated as follow:

 > output (NO, NO) c (\(n, k) =>
 > if n == k then pure (k + 1) else (pure k))

D.3.2. Convert Transition Inscription

 The function in a TPN transition is assembled from two parts in the
 CPN transition: from the unification of variables defined in CPN
 input arcs with the same name and from the guard boolean expression.

D.3.2.1. Unification

 The variables to unify are all the variables that hold the same name
 but in different input arc inscriptions.

 To unify two variables, first they need each to be transformed into a
 pair of indexes. The first element of the pair is the index of the
 input that contains the variable. The second element is the index of
 the variable in the codomain of the inscription in that input.

 Then 2 pairs of elements can be converted in a 4-tuple that express
 the constraint that these two variables must be unified. Finally the
 4-tuplaes are added to a list of all the unifications needed for that
 transition.

 E.g., the unification part for the transition in the top left of
 Figure 1 of [Jensen07] can be translated as follow:

 Here the first pair (0, 0) means the No in the NoxData pair in the
 first input. The second pair, (1. 0), means the (unique) No in the
 second input.

Petit-Huguenin Expires 8 February 2023 [Page 108]

Internet-Draft Computerate Specifying August 2022

 > transition "send packet"
 > [input packetsToSend NoxData one,
 > input nextSend NO one]
 > [(0, 0, 1, 0)]
 > [output NoxData packetsToSend pure,
 > output NO nextSend pure,
 > output NoxData a pure]
 > (\((n, d), n’) => pure ((n, d), n, (n, d)))

 Here "n" is coming from the "packetsToSend" place, whereas "n’" is
 coming from the "nextSend" place.

D.3.2.2. Guards

 See http://cpntools.org/2018/01/09/guards/ for the definition of CPN
 guards.

 Converting guards is straightforward, as the boolean expression is
 simply tested and returns empty if the result is false.

 E.g., the guard on the left side of Figure 42 of [Jensen07] can be
 translated as follow:

 > transition "remove packet"
 > [input packetsToSend NoxData one,
 > input nextSend NO one]
 > empty
 > [output NO nextSend pure]
 > (\((n, d), k) => if n < k then pure n else empty)

D.4. Convert Substitution Transitions

 See http://cpntools.org/2018/01/09/substitution-transitions/ for the
 definition of CPN substitution transitions.

 A CPN substitution transition is called an instance in TPN. An
 instance is how a reusable module is inserted into another module.

 A substitution is created by moving places, transitions, and
 instances from an existing module into a new module. Then places
 that will be shared with another module are modified into ports, with
 the same type.

 Then a new instance referencing that new module is inserted in place
 of the places, transitions, and instances that were removed in the
 original module.

Petit-Huguenin Expires 8 February 2023 [Page 109]

Internet-Draft Computerate Specifying August 2022

 Finally the mapping list in the new instance must list either ports
 or places that are to be mapped to the port exported by the new
 instance. In CPN the places and ports that are mapped to the ports
 exported by a module in an instance are called sockets.

D.5. Convert Fusion Places

 See http://cpntools.org/2018/01/09/fusion-places/ for the definition
 of CON fusion places.

 A fusion place, which is the duplication of a place where all
 duplicates share the same content, is used in CPN either in the same
 module, or in different modules.

 The former case exists only to help some user interface issues, so a
 fusion places in the same module can safely use a unique TPN place.

 For the latter case, each fusion place must be converted into a TPN
 port of the modules where they are used. Then the mapping for that
 port in the TPN instance that use these modules must reference the
 same local port. This process must continue up to the level where
 all the ports for the fusion places converge, and have a unique place
 mapped to all these ports.

Appendix E. A Distributed Package Manager for Computerate
 Specifications

 | Any organization that designs a system (defined broadly) will
 | produce a design whose structure is a copy of the organization’s
 | communication structure.
 |
 | -- Melvin E. Conway

 One long-term goal of this document is to establish a library of
 exported specifications for network protocols, much like the Lean
 Mathematical Library [Community20]. But unlike mathlib, which is
 built as a single git repository hosted in GitHub, the computerate
 library is built to mirror the intended distributed design of the
 Internet.

Petit-Huguenin Expires 8 February 2023 [Page 110]

Internet-Draft Computerate Specifying August 2022

 Computerate specifications are composed of code, so using a git
 repository to store that code and its evolution seems the right
 choice. But instead of using a single repository, each computerate
 specification is stored into a separate git repository. This permits
 to let each contributor choose how they will provide a public access
 to each git repository, anywhere in the spectrum from hosting
 providers (GitHub, GitLab, BitBucket...) to distributed services
 (IPFS, Radicle...), and including self-hosted servers (Gitolite,
 GitLab...).

 Be able to export specifications would be useless without the ability
 to import other specifications. This requires the use of
 dependencies, such as the graph of dependencies between
 specifications will grow until it mirrors the graph of normative
 references between standards documents.

 Here also we eschew the usual solution to that issue, which is using
 a centralized artifact repository (Maven, Gem, Apt, ...), in favor of
 a distributed solution, both for the storage of the binary artifacts
 and for the resources needed to build and verify them.

 The solutions developed to fulfill these requirements ensure better
 availability, scalability and freedom than if it was designed as a
 single GitHub repository.

E.1. Distributed Source Repositories

E.1.1. The "gits" Protocol

 | It’s not that I have something to hide. I have nothing I want you
 | to see.
 |
 | -- Amanda Seyfried’s character in Anon (2018)

 Among all transport protocols that can be used to fetch commits, the
 Git protocol is the fastest as it runs directly over a TCP
 connection. It is directly implemented by the "git daemon" command.
 For this reason it is the best choice to make public a git repository
 in read-only mode.

 But, although everyone can fetch commits from such a repository, the
 transfer of the commits themselves is not encrypted. The "gits"
 transport protocol solves that issue by replacing the TCP connection
 by a TLS connection. On the client side, the remote helper "git-
 remote-gits" is provided as part of the tooling. On the server side,
 the simplest solution is to use "stunnel" together with "git daemon".

Petit-Huguenin Expires 8 February 2023 [Page 111]

Internet-Draft Computerate Specifying August 2022

E.1.2. The "mgit" and "mgits" Protocols

 The mgit protocol provides an indirection to a list of git URLs, all
 pointing to identical mirrors of the same repository. An mgit URL
 provides scalability, reliability, and the ability of adding and
 removing git mirrors without having to changing the URL itself. Note
 that mirrors can use any kind of git URL (http, ssh, git, etc...),
 including gits URLs.

 An mgit URL has the format "mgit://<random>", where <random> is a 40
 hexadecimal characters string. Such URL is very stable, and can be
 published in a document for the purpose of retrieving the git
 repository holding the computerate specification that was used to
 generate that document.

 Internally that string is used as the index to store the list of URLs
 pointing to the git mirrors in a RELOAD [RFC6940] P2P Overlay. Note
 that storing such list of URLs in the overlay requires credentials.

 The remote helper "git-remote-mgit" is provided as part of the
 tooling. When used to fetch commit, it first contacts the overlay to
 retrieve the list of mirrors, then choose one randomly and fetch the
 commits from there. If the mirror does not respond, then another
 mirror is randomly selected from the list, until all mirrors have be
 tried.

 The "git-remote-mgits" remote helper behaves similarly, but always
 excludes URLs that do not encrypt the transport.

E.1.3. Git Submodules as Dependencies

 A specification is a set of files that, together, are used as input
 to a process that generate a document. The subset of Idris files in
 that set forms an Idris Package. One and only one Idris package is
 stored per Git repository.

 For specifications defined by this document, dependencies to other
 Idris Packages are defined by adding the Git repositories storing
 these repositories as Git submodules. This permits to distribute the
 graph of dependencies between each repository, without requiring a
 separate way of storing that information. The downside of doing that
 is that a new commit needs to be created to change the URL of a
 submodule.

 In the traditional use of a submodule, 1) the URL to the Git
 repository together with 2) the commit that needs to be checked out
 in that repository, are the two pieces of information that are
 stored.

Petit-Huguenin Expires 8 February 2023 [Page 112]

Internet-Draft Computerate Specifying August 2022

 Instead of using a traditional "https" URL for the submodule, we use
 an "mgits" URL which brings a better reliability and availability,
 together with the ability to add or remove mirrors without having to
 create a new commit.

E.2. Distributed Artifact Manager

E.2.1. Reproducible Build

 We are storing binary artifacts in a distributed cache that is
 colocated with each git repository.

 Because the size of a cache cannot be unbounded, we need to be able
 to rebuild any artifact at any time from any commit in a git
 repository, and ensure that the artifact built for a commit stays the
 same regardless of when and where it is built.

 We solve this issue by making all specification builds reproducible.
 In that context, reproducible means that building binary artifacts
 now or in 10 years will result in two sets of artifacts that are bit-
 exact identical.

 That property permits to identifies each build by the commit-id of
 the commit of the source that was used to build it.

 A clear consequence of this is that the Idris compiler and its
 runtime (chezscheme) should be available as source on the same
 commit, and should be part of the build. The simplest way to
 guarantee that is that these tools are also available as git
 submodules.

E.2.2. Distributed Cache

 We use the git-lfs extension storage, when available, to store the
 binary artifacts.

 When a build ends successfully, all the artifacts created in the
 source tree, which are easily recognizable because they are the files
 that are not already managed by git (ignoring the content of the
 .gitignore file), are packed in a file (zip, tar...) and uploaded
 into the git-lfs server, using the SHA256 hash of the commit-id of
 the source tree as OID.

 The first step of a build is to try to retrieve the artifacts from
 the git-lfs storage, using the current commit-id. If that succeeds,
 the zip file retrieved is expanded, such as the artifacts are
 installed in the source tree exactly as they are after a successful
 build. If that fails then the build proceeds as usual.

Petit-Huguenin Expires 8 February 2023 [Page 113]

Internet-Draft Computerate Specifying August 2022

E.3. Recursive Build

 Building a specification generally starts with building dependencies,
 as defined by submodules. Because submodules may themselves have
 submodules, the build becomes recursive.

 Building a specification recursively from source would take a long
 time, so we take advantage of the distributed caches to download the
 binary artifacts instead when they are available.

 To do so we need first to index the git repositories specifications
 by their commit-id.

E.3.1. Indexing Commits

 We are using of one of the properties of a commit-id, which is a hash
 of the content of a commit, including the date and time, and the
 commit-id of the previous commit. That property is that a commit-id
 is a statistically globally unique identifier for the content of that
 commit, meaning that if the same commit-id lives in different
 repositories, they will still points to the exact same content. That
 means that by building an index for all the commit-ids of interest,
 we can associate each of them with the list of git repositories that
 contain it.

 We are doing this indexation again in a distributed way, using the
 same RELOAD P2P overlay used in Appendix E.1.2.

 Each time commits for a computerate specification are pushed in a git
 repository that have a public access, our "mgits" git remote helper
 is used as a wrapper for the actual URI:

 mgits::gitolite3@example.org:computerate-specifying.git

 The "computerate" wrapper stores each commit pushed in the P2P
 overlay as index, with the gitolite3@example.org:computerate-
 specifying.git URL in the associated RELOAD Array. If the Array for
 a specific commit already exist, the URL is added to that Array if
 the URL is not already there.

E.3.2. Building a Submodule

 Before building a submodule, the build process queries the P2P
 Overlay using the commit-id of the submodule as index. That returns
 a list of git URLs, each pointing to a git repositories that hold
 that particular commit. The build process chooses one of these, and
 tries to download the binary artifacts, as explained in
 Appendix E.2.2. If the artifacts are not available, the sources

Petit-Huguenin Expires 8 February 2023 [Page 114]

Internet-Draft Computerate Specifying August 2022

 files are retrieved from one of the git repositories, and the build
 is applied to each submodule before building that submodule.

E.3.3. Pinned Down Builds

 The whole process would require to start the typechecking of any
 specification that is not yet cached by rebuilding the Idris compiler
 and the chezscheme runtime. This is why it is permitted to pin down
 some builds in the distributed cache, i.e. they are never candidate
 for removal, which would make them always available.

Appendix F. Git Layout for Computerate Specifications

 In most cases computerate specifications cannot be distributed
 because the IETF Trust declined to grant a license for that purpose
 (see item 5 in [Minutes]). Thus any distribution of a computerate
 specification would be a copyright infringement.

 To work around that limitation, computerate specifications are not
 distributed as an annotated RFC or Internet-Draft, but as a set of
 files colocated with the RFC/I-D, using transclusions to merge the
 files only when a specification is checked out by Git.

 A new git command "git computerate" is distributed with the tooling,
 and permits to manage a distributable repository containing a
 specification.

 The content of such Git repository can be seen as conversions between
 3 states:

 * The reference file contains an RFC or Internet-Draft, exactly as
 stored in the RFC Editor or IETF Secretariat databases. For the
 time being, only the text version of these documents is used, as
 the xml2rfc v3 version for I-Ds is not canonical, or even existing
 in the first place.

 * The computerate specification, which is composed of at least one
 file with the .lipkg extension, and a set of optional .adoc and
 .lidr files, all of them included from the .lipkg file. These
 files only exist on a checked out repository and are never pushed
 or pulled from or to a remote.

 * The transcluded specification, which is composed of the exact same
 set of files than above, but with the copyrighted text replaced by
 transclusions. These files are the one that are pulled and pushed
 to and from a remote.

 There is 4 different conversions taking place between these states:

Petit-Huguenin Expires 8 February 2023 [Page 115]

Internet-Draft Computerate Specifying August 2022

 From reference file to computerate specification: The "convert"
 subcommand takes an RFC or I-D in text format, stores it in the
 current git repository under the name ".reference.txt" and
 generates an initial computerate specification named "Main.lipkg".
 That same program can optionally take as parameter the set of
 existing files for the computerate specification and calculate a
 patchset to be applied when a new version of an Internet-Draft is
 submitted, when the RFC is published, or when an erratum for that
 RFC is verified.

 From computerate specification to reference file: The "computerate"
 program takes the computerate specification files and convert them
 into a reference file. See Appendix A.3 for the usage.

 From computerate specification to transcluded specification: the
 "clean" program takes one of the computerate specification files,
 the reference file, and replaces this computerate specification
 file by substituting all the text that also exist in the reference
 file by transclusions.

 From transcluded specification to computerate specification: the "sm
 udge" program takes a transcluded specification file, the
 reference file and replace this transcluded specification file by
 substituting the transclusions with the text in the reference
 file.

 In addition, a diff program can compare two text versions of the same
 RFC or Internet-Drafts, but excluding the differences in formatting.
 When an RFC or I-D is converted to a computerate specification, which
 itself is converted back to a text document, a diff of the original
 text and of the generated text should result in no difference.
 Similarly a computerate specification converted as text and then
 converted back into a computerate specification should be equal to
 the original computerate specification. This goes beyond the
 capability of the "rfcdiff" program, e.g., by ignoring how sentences
 are wrapped-up in a paragraph.

 Similarly the clean and smudge programs should be able to convert
 back and forth between the computerate specification and the
 transcluded specification without loss of information. These two
 programs are executed automatically by git when a specification file
 is either checked-out or staged.

 A transcluded specification uses the canonical representation in
 [I-D.rivest-sexp], i.e., using only lists and octet-strings in
 verbatim mode. This format does not require any escaping and is
 agnostic on whether the RFC or Internet-Draft is a text or an xml
 file. A transcluded specification is a list of either an octet-

Petit-Huguenin Expires 8 February 2023 [Page 116]

Internet-Draft Computerate Specifying August 2022

 string that contains the text from the computerate specification, or
 a list of two numbers (encoded as octet-strings containing a base 10
 encoding of these numbers) that represent respectively a 0-based byte
 offset in the RFC or Internet-Draft and the number of bytes to copy
 from that offset.

 Note that it is crucial to understand that the act of merging
 reference file and transcluded file must only be done on a local
 computer, so to not infringe on the IETF Trust copyright. This makes
 Git web interfaces like GitHub less useful than for other types of
 files, as such web interface can only display the transcluded file.
 The package management system for computerate specifications
 described in Appendix E does not rely on the availability of a web
 interface for the git repositories.

 It is recommended to populate a "copyright" file [Copyright],
 colocated with each computerate specification, that contains the
 exact license used for each file in the repository,

Acknowledgements

 Thanks to Jim Kleck, Eric Petit-Huguenin, Nicolas Gironi, Stephen
 McQuistin, Greg Skinner, and Raluca Toth for the comments,
 suggestions, questions, and testing that helped improve this document
 and its associated tooling.

 Thanks to Ronald Tse and the Ribose team for the metanorma and
 relaton tools and their diligence in fixing bugs and implementing
 improvements.

Contributors

 Stéphane Bryant
 Email: stephane.ml.bryant@gmail.com

 Stephane is a co-founder of the Nephelion project, project that
 started back in 2014 during a week-end visiting national parks in
 Utah. Computerate Specifying is phase 1 of this project, and it
 could not have been done without the frequent reviews and video calls
 with Stephane during these last 7 years.

Changelog

 draft-petithuguenin-computerate-specifying-17:

 * Document:
 - Refresh.

Petit-Huguenin Expires 8 February 2023 [Page 117]

Internet-Draft Computerate Specifying August 2022

 draft-petithuguenin-computerate-specifying-16:

 * Document:
 - Replace the m-word with "formal" when possible.
 - Rewrite sections 2, 4, 6, and 7 as tutorials.
 - Remove all unfinished sections.
 - Merge appendix E in section 5 to prepare rewrite as tutorial.
 - Add RFC 8941 formalization as sections 6.2.1.2, 8.2.2, and B.3.
 - Update text about converting I-D/RFC in Asciidoc.
 - Add description of the transcluded specification file.
 - Update contributors section.

 * Tooling:
 - Update mnconvert to 1.13.0.
 - Do not display constructors of an non-public type constructor.
 - Package rfc8941 is part of the standard library.
 - Update metanorma to 1.4.1.
 - Update idnits to 2.17.01.
 - Remove comment generation in mnconvert.
 - Fix issues in idrisdoc generation.
 - Fix escaping of code macro.

 * Library:
 - Package computerate-specifying:
 o Fix Eq and Ord for Dimension.
 o Module Dimension now uses a deep embedding DSL so formulas
 can be inserted in a document.
 - Package rfc5234:
 o Rename Valid type as Example.
 o Kleene star replaces repeat.
 o Adding a group is no longer needed inside an ABNF repeat or
 optional function. With that a group is now a decoration.
 o Redesign of ABNF comments as decorations. Pretty printing
 now follow RFC 5234 usage.

 draft-petithuguenin-computerate-specifying-15:

 * Document:
 - Rework the RFC5234 module in sections 8.2.1 and B.2.1.
 - Rewrite of section 7 "Exporting Specifications".
 - Rename appendix B to "API Documentation".
 - Rework the Dimension module in sections 8.1.4 and B.1.4.

 * Tooling:
 - Update xml2rfc to 3.11.1.
 - Add "impl" parameter to code macros to pass the name of a
 Pretty or Asciidoc implementation.
 - Added pdfattach/pdfdetach tools.

Petit-Huguenin Expires 8 February 2023 [Page 118]

Internet-Draft Computerate Specifying August 2022

 - Update metanorma-ietf to 2.5.0.1.
 - Update metanorma to 1.4.0.
 - The Dimension module is distributed with the tooling.
 - The code:[] macro now requires a value of a type that
 implements the ComputerateSpecifying.Metanorma.Ietf.Asciidoc
 interface.
 - Add the id2xml tool.

 * Template:
 - Converted the examples in Literate to use the Asciidoc
 interface.
 - Add example of ABNF.

 * Library:
 - Add user-defined dimensions to the Dimension module.
 - Add type to prove that a string is valid for a specific ABNF in
 package rfc5234.

 draft-petithuguenin-computerate-specifying-14:

 * Document:
 - Reorganized the CLI appendix, as most of text related to the
 AsciiDoc content of a specification moved to the templates.
 - Indent examples instead of using <CODE BEGINS>/<CODE END>.
 - Update of the Abnf tutorial (section 6.2.1.4).
 - Update of the Abnf reference (section 8.2.2).
 - Update of the Abnf IdrisDoc (section B.2).

 * Tooling:
 - Update metanorma to 1.2.12.
 - Distribution of templates in the docker image.
 - An include with a computerate I-D as target now insert a
 bibliographic item for that I-D.
 - Distribution of a Zotero exporter for AsciiBib in the docker
 image.
 - Code fragments are now inserted using the new "code" macros.
 - mnconvert now generates one line of text per sentence.
 - Replaced rfc2mn by mnconvert.
 - Update metanorma-ietf to 2.4.4.
 - The rfc5234 package is now distributed in the Docker image.

 draft-petithuguenin-computerate-specifying-13:

 * Document:
 - Update of the TPN simulation tutorial (section 6.1.4.3).
 - Update of the TPN reference to align with the Tpn module
 (section B.1.7.1).

Petit-Huguenin Expires 8 February 2023 [Page 119]

Internet-Draft Computerate Specifying August 2022

 - Reorganization of section D, adding text for Substitution
 Transitions and Fusion Places.
 - More dogfooding by having the examples in appendix D
 typechecked when the document is built.

 * Tooling:
 - Update xml2rfc to 3.10.0.
 - Update metanorma-ietf to 2.4.2.
 - Update metanorma to 1.3.11.
 - Update Idris2 to 0.5.1.
 - The Tpn module is now distributed in the Docker image.

 * Library:
 - Because the domain of the input inscription is now a list, the
 function has to be run on the permutation-subsets of the
 content instead of on the content itself, which is a
 significant difference. So to permit to use constraint
 propagation with backtracking the unification is now specified
 separately from the transition inscription.
 - Input arc inscriptions now takes a non-empty list as input
 parameter, which in in line with CPN behavior. The "one"
 function can be used in replacement for "pure".
 - Free variables are now generated instead of having to manually
 convert them. The type of a free variable must implement
 "Enum".
 - "Marking" implements "Show".
 - Implemented "initialMarking".
 - Naming stuff is hard enough, so uniqueness of names in a TPN is
 no longer mandatory.
 - A TPN module is now indexed over the list of the port types it
 exports.

 draft-petithuguenin-computerate-specifying-12:

 * Document:
 - TPN documentation update:
 o Now supports Timed TPN.
 o A Monadic DSL replaces the direct access to constructors,
 making the syntax more compact and readable.
 o The text in sections 6.1.4.1, the new 6.1.4.2, 8.1.7.1,
 B.1.6, and appendix D is updated to reflect these
 modifications.
 - Update list of meta-languages.

 * Tooling:
 - Modify xml2rfc to add the appendices in the info file.
 - Update metanorma-ietf to 2.4.1.
 - Update metanorma to 1.3.10.

Petit-Huguenin Expires 8 February 2023 [Page 120]

Internet-Draft Computerate Specifying August 2022

 draft-petithuguenin-computerate-specifying-11:

 * Document:
 - Add a section for each formal language defined in an RFC.
 - More explanations on escaping, literate ipkg and self-
 inclusion.

 * Tooling:
 - Remove temporary files before processing.
 - Update idnits to 2.17.00.
 - Backticks inside code fragment are correctly processed.
 - Update metanorma to 1.3.9.1.
 - Files with .lipkg extension are also processed as literate
 files. This permits to have a top adoc file also containing an
 Idris package definition.

 draft-petithuguenin-computerate-specifying-10:

 * Document:
 - Renamed and reworked the AsciiDoc library as Metanorma.Ietf.
 - New ComputerateSpecifying module for common types.
 - Align I-D references with the RFC Editor Style Guide.

 * Tooling:
 - A subset of the computerate specifying standard library is now
 distributed in the Docker image. Currently the Metanorma.Ietf
 module is the only module distributed.
 - Update asciidoctor to 2.0.16.
 - Base image is now Debian bullseye-slim.
 - Remove transclusion processor.
 - Insert SeriesInfo in correct order (BCP|STD|FYI, RFC|Internet-
 Draft, DOI).
 - Process correctly literate error.
 - Processing of Idris files is done only once.
 - Remove useless metanorma patches.
 - Update Idris2 to 0.4.0.
 - Update xml2rfc to 3.9.1.
 - Update metanorma to 1.3.9.
 - Update metanorma-ietf to 2.4.0

 draft-petithuguenin-computerate-specifying-09:

 * Document:
 - New design for codepoint registries.
 - Transclusions are now implicit.
 - New appendix G explains how git is used to legally distribute
 retrofitted specifications after the IETF Trust rejected a
 request for a license.

Petit-Huguenin Expires 8 February 2023 [Page 121]

Internet-Draft Computerate Specifying August 2022

 - Improved bibliography.

 * Tooling:
 - The include directive for lidr file now supports range, tag and
 tags attributes. This permits to copy the actual code into a
 block.
 - The "--dg asciidoc" option for idris2 generates the
 documentation in AsciiDoc instead of HTML.
 - Update asciidoctor to 2.0.15.
 - Update metanorma to 1.3.3.
 - Update metanorma-ietf to 2.3.2.

 draft-petithuguenin-computerate-specifying-08:

 * Document:
 - Most of the bibliography is now generated from a Zotero
 collection, resulting in a better and easier to maintain
 bibliography.
 - Nits.
 - Explanations on how to convert a CPN transition into a TPN
 transition.
 - New appendix F describing the distributed system for the
 computerate specifications library.
 - Improvements in the TPN Tutorial, Reference and IdrisDoc.

 * Tooling:
 - Add rfc2mn tool to convert an xml2rfc file into an AsciiDoc
 document.
 - Update asciidoctor to 2.0.14
 - Update metanorma to 1.3.0.
 - Update metanorma-ietf to 2.3.0.
 - Update xml2rfc to 3.7.0.
 - Multiline problem in postal address is fixed in metanorma.
 - Default figure wrapping problem is fixed in metanorma.

 draft-petithuguenin-computerate-specifying-07:

 * Document:
 - New text for Sum type, Product type.
 - Text explaining how to convert a CPN Place into a TPN Place.
 - Typed Petri Nets are now hierarchical.

 * Tooling:
 - Idris can now run shebang files.
 - Update xml2rfc to 3.6.0.
 - Update metanorma to 1.2.7.
 - Update metanorma-ietf to 2.2.9.

Petit-Huguenin Expires 8 February 2023 [Page 122]

Internet-Draft Computerate Specifying August 2022

 draft-petithuguenin-computerate-specifying-06:

 * Document:
 - Rename abstract type as semantic type, and coloured petri nets
 as colored petri net.
 - Remove figure wrapper from all source code, and added markers
 when missing.
 - Rewrite and extension of sections 6.1.4 and 6.1.5.2 to show how
 to generate a Message Sequence Chart from a Petri Net.
 - New step by step explanation on how to manually convert a CPN
 into a TPN as appendix D.
 - New tutorial on Evidence-Based Answers as appendix E.

 * Tooling:
 - Generated sourcecode elements are no longer wrapped by default
 in a figure element.

 * Library:
 - Update of the "Tpn" module.

 draft-petithuguenin-computerate-specifying-05:

 * Document:
 - Update installation instructions for BitTorrent.
 - Removed text related to the dat tool.
 - Modifications following Stephane’s review.
 - Add XMPP address.

 * Tooling:
 - Fix idrisdoc when generating multiplicity.
 - Upgrade asciidoctor to 2.0.12.
 - Upgrade xml2rfc to 3.5.0.
 - xml2rfc --validation option makes patch unnecessary.
 - Upgrade metanorma (1.2.5) and dependencies.
 - The tooling docker image is now distributed as a BitTorrent.
 - Idnits upgraded to 2.16.05.

 * Library:
 - Use linear types in some BitVector functions.

 draft-petithuguenin-computerate-specifying-04:

 * Document:
 - Sections 2, 3, 4 and 5 have been completely reorganized,
 edited, and extended as a tutorial.
 - New Terminology section.

Petit-Huguenin Expires 8 February 2023 [Page 123]

Internet-Draft Computerate Specifying August 2022

 - Add a new Standard Library section, that contains the
 description of all the Idris modules and external packages that
 will be available for developing specifications.
 - Improve bibliography.
 - Extend the CLI section to cover:
 o New features.
 o Bibliography templates.
 o Complete bugs and TODO lists.
 - Generate IdrisDoc of standard library packages and modules as a
 new appendix.
 - Update errata stats.
 - More compact changelog.
 - Many modifications following Stephane’s reviews.

 * Tooling:
 - Additional metanorma features:
 o Generate json file.
 - Various bug fixes in metanorma and relaton.
 - Additional Idris2 features:
 o Generate elaboration cache command.
 o Elaboration cache implementation.
 o IdrisDoc generation.
 o Some TTImp types can carry comments.
 o Quoted package names in ipkg.
 o List dependencies.
 o Package mapping.
 o Faster literate processing.
 - Idris2 wrapper to load local packages.
 - New include processor to generate IdrisDoc.
 - Process multiple fragments on each line.
 - Add support for asciidoctor outputs, including revealjs and
 diagrams.
 - Embedding code must now return a value that implements "Show".
 String values are then stripped of their first and last double-
 quotes.
 - Fix bug where transcluded text is converted into ASCII art.
 - Embedded code in examples in lidr files can now be escaped with
 "\".
 - Replace Idris with Idris2 version 0.2.1.
 - Update metanorma to 1.1.4.
 - Update metanorma-ietf to 2.2.2.
 - Update xml2rfc to 3.0.0.
 - Downgrade idnits to 2.16.04.
 - Decommission the Docker image in dat://78f80c850af509e0cd3fd7bd
 6f5d0dd527a861d783e05574bbd040f0502da3c6.

 * Library:
 - Decommission the RFC 5234 library for complete rewrite.

Petit-Huguenin Expires 8 February 2023 [Page 124]

Internet-Draft Computerate Specifying August 2022

 draft-petithuguenin-computerate-specifying-03:

 * Document:
 - Notes are now correctly displayed.
 - Add "Implementations Oriented Standards" section.
 - Add "Extended Registries" section and appendix.
 - Add paragraph about hierarchical petri nets.
 - Convert "Verified Code" section into a top level section, and
 expand it.
 - Add "Implementation-Oriented Standards" section.

 * Tooling:
 - Many bug fixes in metanorma-ietf.
 - Update xml2rfc to 2.40.1.
 - Rebuilding text for an RFC with xml2rfc now uses pagination.
 - Update metanorma-ietf to version 2.0.5.
 - The "computerate" command can directly generate PDF files.
 - Add support in xml2rfc for generating PDF files.
 - Add asciidoctor-revealjs.
 - Update metanorma to version 1.0.0.
 - Update metanorma-cli to version 1.2.10.1.

 * Library:
 - No update

 draft-petithuguenin-computerate-specifying-02:

 * Document
 - Switch to rfcxml3.
 - Status is now experimental.
 - Many nits.
 - Fix incorrect errata stats.
 - Move acknowledgment section at the end.
 - Rewrite the APHD section (formerly known as AAD) to match
 draft-mcquistin-augmented-diagrams-01.
 - Fix non-ascii characters in the references.
 - Intermediate AsciiDoc representation for serializers.

 * Tooling
 - xmlrfc3 is now the default extension.
 - "docName" and "category" attributes are now generated, and the
 "prepTime" is removed.
 - Update xml2rfc to 2.35.0.
 - Remove LanguageTool.
 - Update Metanorma to version 0.3.17.
 - Update Asciidoctor to 2.0.10.
 - Update list of Working Groups.

Petit-Huguenin Expires 8 February 2023 [Page 125]

Internet-Draft Computerate Specifying August 2022

 * Library
 - No update.

 draft-petithuguenin-computerate-specifying-01:

 * Document
 - New changelog appendix.
 - Fix incorrect reference, formatting in Idris code.
 - Add option to remove container in all "docker run" command.
 - Add explanations to use the Idris REPL and VIM inside the
 Docker image.
 - Add placeholders for ASN.1 and RELAX NG languages.
 - New Errata appendix.
 - Nits.
 - Improve Syntax Examples section.

 * Tooling
 - Update Metanorma to version 0.3.16
 - Update MetaNorma-cli to version 1.2.7.1
 - Switch to patched version of Idris 1.3.2 that supports remote
 REPL in Docker.
 - Add VIM and idris-vim extension.
 - Remove some debug statements.

 * Library
 - No update

Author’s Address

 Marc Petit-Huguenin
 Impedance Mismatch LLC
 Email: marc@petit-huguenin.org
 URI: hallway@jabber.ietf.org/MPH

Petit-Huguenin Expires 8 February 2023 [Page 126]

