
Web Authorization Protocol D. Fett
Internet-Draft Authlete
Intended status: Standards Track B. Campbell
Expires: 15 October 2023 Ping Identity
 J. Bradley
 Yubico
 T. Lodderstedt
 yes.com
 M. Jones
 independent
 D. Waite
 Ping Identity
 13 April 2023

 OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer
 (DPoP)
 draft-ietf-oauth-dpop-16

Abstract

 This document describes a mechanism for sender-constraining OAuth 2.0
 tokens via a proof-of-possession mechanism on the application level.
 This mechanism allows for the detection of replay attacks with access
 and refresh tokens.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 15 October 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Fett, et al. Expires 15 October 2023 [Page 1]

Internet-Draft OAuth DPoP April 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Conventions and Terminology 4
 2. Objectives . 5
 3. Concept . 6
 4. DPoP Proof JWTs . 8
 4.1. The DPoP HTTP Header 8
 4.2. DPoP Proof JWT Syntax 9
 4.3. Checking DPoP Proofs 11
 5. DPoP Access Token Request 12
 5.1. Authorization Server Metadata 15
 5.2. Client Registration Metadata 15
 6. Public Key Confirmation 16
 6.1. JWK Thumbprint Confirmation Method 16
 6.2. JWK Thumbprint Confirmation Method in Token
 Introspection . 17
 7. Protected Resource Access 18
 7.1. The DPoP Authentication Scheme 19
 7.2. Compatibility with the Bearer Authentication Scheme . . . 22
 7.3. Client Considerations 24
 8. Authorization Server-Provided Nonce 24
 8.1. Nonce Syntax . 26
 8.2. Providing a New Nonce Value 26
 9. Resource Server-Provided Nonce 27
 10. Authorization Code Binding to DPoP Key 28
 10.1. DPoP with Pushed Authorization Requests 28
 11. Security Considerations 29
 11.1. DPoP Proof Replay 29
 11.2. DPoP Proof Pre-Generation 30
 11.3. DPoP Nonce Downgrade 31
 11.4. Untrusted Code in the Client Context 31
 11.5. Signed JWT Swapping 32
 11.6. Signature Algorithms 32
 11.7. Request Integrity 32
 11.8. Access Token and Public Key Binding 33
 11.9. Authorization Code and Public Key Binding 33
 11.10. Hash Algorithm Agility 34
 11.11. Binding to Client Identity 34

Fett, et al. Expires 15 October 2023 [Page 2]

Internet-Draft OAuth DPoP April 2023

 12. IANA Considerations . 34
 12.1. OAuth Access Token Type Registration 34
 12.2. OAuth Extensions Error Registration 35
 12.3. OAuth Parameters Registration 35
 12.4. HTTP Authentication Scheme Registration 35
 12.5. Media Type Registration 36
 12.6. JWT Confirmation Methods Registration 36
 12.7. JSON Web Token Claims Registration 36
 12.7.1. "nonce" Registry Update 37
 12.8. HTTP Message Header Field Names Registration 38
 12.9. OAuth Authorization Server Metadata Registration 38
 12.10. OAuth Dynamic Client Registration Metadata 38
 13. Normative References . 38
 14. Informative References 40
 Appendix A. Acknowledgements 43
 Appendix B. Document History 44
 Authors’ Addresses . 48

1. Introduction

 DPoP (for Demonstrating Proof-of-Possession at the Application Layer)
 is an application-level mechanism for sender-constraining OAuth
 [RFC6749] access and refresh tokens. It enables a client to prove
 the possession of a public/private key pair by including a DPoP
 header in an HTTP request. The value of the header is a JSON Web
 Token (JWT) [RFC7519] that enables the authorization server to bind
 issued tokens to the public part of a client’s key pair. Recipients
 of such tokens are then able to verify the binding of the token to
 the key pair that the client has demonstrated that it holds via the
 DPoP header, thereby providing some assurance that the client
 presenting the token also possesses the private key. In other words,
 the legitimate presenter of the token is constrained to be the sender
 that holds and can prove possession of the private part of the key
 pair.

Fett, et al. Expires 15 October 2023 [Page 3]

Internet-Draft OAuth DPoP April 2023

 The mechanism specified herein can be used in cases where other
 methods of sender-constraining tokens that utilize elements of the
 underlying secure transport layer, such as [RFC8705] or
 [I-D.ietf-oauth-token-binding], are not available or desirable. For
 example, due to a sub-par user experience of TLS client
 authentication in user agents and a lack of support for HTTP token
 binding, neither mechanism can be used if an OAuth client is an
 application that is dynamically downloaded and executed in a web
 browser (sometimes referred to as a "single-page application").
 Applications installed and run directly on a user’s device are
 another example well positioned to benefit from DPoP-bound tokens to
 guard against misuse of tokens by a compromised or malicious
 resource. Such applications often have dedicated protected storage
 for cryptographic keys.

 DPoP can be used to sender-constrain access tokens regardless of the
 client authentication method employed, but DPoP itself is not used
 for client authentication. DPoP can also be used to sender-constrain
 refresh tokens issued to public clients (those without authentication
 credentials associated with the client_id).

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234].

 This specification uses the terms "access token", "refresh token",
 "authorization server", "resource server", "authorization endpoint",
 "authorization request", "authorization response", "token endpoint",
 "grant type", "access token request", "access token response",
 "client", "public client", and "confidential client" defined by The
 OAuth 2.0 Authorization Framework [RFC6749].

 The terms "request", "response", "header field", and "target URI" are
 imported from [RFC9110].

 The terms "JOSE" and "JOSE header" are imported from [RFC7515].

Fett, et al. Expires 15 October 2023 [Page 4]

Internet-Draft OAuth DPoP April 2023

 This document contains non-normative examples of partial and complete
 HTTP messages. Some examples use a single trailing backslash to
 indicate line wrapping for long values, as per [RFC8792]. The
 character and leading spaces on wrapped lines are not part of the
 value.

2. Objectives

 The primary aim of DPoP is to prevent unauthorized or illegitimate
 parties from using leaked or stolen access tokens, by binding a token
 to a public key upon issuance and requiring that the client proves
 possession of the corresponding private key when using the token.
 This constrains the legitimate sender of the token to only the party
 with access to the private key and gives the server receiving the
 token added assurances that the sender is legitimately authorized to
 use it.

 Access tokens that are sender-constrained via DPoP thus stand in
 contrast to the typical bearer token, which can be used by any party
 in possession of such a token. Although protections generally exist
 to prevent unintended disclosure of bearer tokens, unforeseen vectors
 for leakage have occurred due to vulnerabilities and implementation
 issues in other layers in the protocol or software stack (CRIME
 [CRIME], BREACH [BREACH], Heartbleed [Heartbleed], and the Cloudflare
 parser bug [Cloudbleed] are some examples). There have also been
 numerous published token theft attacks on OAuth implementations
 themselves ([GitHub.Tokens] as just one high profile example). DPoP
 provides a general defense in depth against the impact of
 unanticipated token leakage. DPoP is not, however, a substitute for
 a secure transport and MUST always be used in conjunction with HTTPS.

 The very nature of the typical OAuth protocol interaction
 necessitates that the client discloses the access token to the
 protected resources that it accesses. The attacker model in
 [I-D.ietf-oauth-security-topics] describes cases where a protected
 resource might be counterfeit, malicious or compromised and plays
 received tokens against other protected resources to gain
 unauthorized access. Audience restricted access tokens (e.g., using
 the JWT [RFC7519] aud claim) can prevent such misuse, however, doing
 so in practice has proven to be prohibitively cumbersome for many
 deployments (even despite extensions such as [RFC8707]). Sender-
 constraining access tokens is a more robust and straightforward
 mechanism to prevent such token replay at a different endpoint and
 DPoP is an accessible application layer means of doing so.

 Due to the potential for cross-site scripting (XSS), browser-based
 OAuth clients bring to bear added considerations with respect to
 protecting tokens. The most straightforward XSS-based attack is for

Fett, et al. Expires 15 October 2023 [Page 5]

Internet-Draft OAuth DPoP April 2023

 an attacker to exfiltrate a token and use it themselves completely
 independent of the legitimate client. A stolen access token is used
 for protected resource access and a stolen refresh token for
 obtaining new access tokens. If the private key is non-extractable
 (as is possible with [W3C.WebCryptoAPI]), DPoP renders exfiltrated
 tokens alone unusable.

 XSS vulnerabilities also allow an attacker to execute code in the
 context of the browser-based client application and maliciously use a
 token indirectly through the client. That execution context has
 access to utilize the signing key and thus can produce DPoP proofs to
 use in conjunction with the token. At this application layer there
 is most likely no feasible defense against this threat except
 generally preventing XSS, therefore it is considered out of scope for
 DPoP.

 Malicious XSS code executed in the context of the browser-based
 client application is also in a position to create DPoP proofs with
 timestamp values in the future and exfiltrate them in conjunction
 with a token. These stolen artifacts can later be used independent
 of the client application to access protected resources. To prevent
 this, servers can optionally require clients to include a server-
 chosen value into the proof that cannot be predicted by an attacker
 (nonce). In the absence of the optional nonce, the impact of pre-
 computed DPoP proofs is limited somewhat by the proof being bound to
 an access token on protected resource access. Because a proof
 covering an access token that does not yet exist cannot feasibly be
 created, access tokens obtained with an exfiltrated refresh token and
 pre-computed proofs will be unusable.

 Additional security considerations are discussed in Section 11.

3. Concept

 The main data structure introduced by this specification is a DPoP
 proof JWT, described in detail below, which is sent as a header in an
 HTTP request. A client uses a DPoP proof JWT to prove the possession
 of a private key corresponding to a certain public key.

 Roughly speaking, a DPoP proof is a signature over some data of the
 HTTP request to which it is attached, a timestamp, a unique
 identifier, an optional server-provided nonce, and a hash of the
 associated access token when an access token is present within the
 request.

Fett, et al. Expires 15 October 2023 [Page 6]

Internet-Draft OAuth DPoP April 2023

 +--------+ +---------------+
	--(A)-- Token Request ------------------->	
Client	(DPoP Proof)	Authorization
		Server
	<-(B)-- DPoP-bound Access Token ----------	
	(token_type=DPoP) +---------------+	
	+---------------+	
	--(C)-- DPoP-bound Access Token --------->	
	(DPoP Proof)	Resource
		Server
	<-(D)-- Protected Resource ---------------	
	+---------------+	
 +--------+

 Figure 1: Basic DPoP Flow

 The basic steps of an OAuth flow with DPoP (without the optional
 nonce) are shown in Figure 1:

 * (A) In the Token Request, the client sends an authorization grant
 (e.g., an authorization code, refresh token, etc.)
 to the authorization server in order to obtain an access token
 (and potentially a refresh token). The client attaches a DPoP
 proof to the request in an HTTP header.
 * (B) The authorization server binds (sender-constrains) the access
 token to the public key claimed by the client in the DPoP proof;
 that is, the access token cannot be used without proving
 possession of the respective private key. If a refresh token is
 issued to a public client, it too is bound to the public key of
 the DPoP proof.
 * (C) To use the access token, the client has to prove possession of
 the private key by, again, adding a header to the request that
 carries a DPoP proof for that request. The resource server needs
 to receive information about the public key to which the access
 token is bound. This information may be encoded directly into the
 access token (for JWT structured access tokens) or provided via
 token introspection endpoint (not shown). The resource server
 verifies that the public key to which the access token is bound
 matches the public key of the DPoP proof. It also verifies that
 the access token hash in the DPoP proof matches the access token
 presented in the request.
 * (D) The resource server refuses to serve the request if the
 signature check fails or the data in the DPoP proof is wrong,
 e.g., the target URI does not match the URI claim in the DPoP
 proof JWT. The access token itself, of course, must also be valid
 in all other respects.

Fett, et al. Expires 15 October 2023 [Page 7]

Internet-Draft OAuth DPoP April 2023

 The DPoP mechanism presented herein is not a client authentication
 method. In fact, a primary use case of DPoP is for public clients
 (e.g., single page applications and applications on a user’s device)
 that do not use client authentication. Nonetheless, DPoP is designed
 such that it is compatible with private_key_jwt and all other client
 authentication methods.

 DPoP does not directly ensure message integrity but relies on the TLS
 layer for that purpose. See Section 11 for details.

4. DPoP Proof JWTs

 DPoP introduces the concept of a DPoP proof, which is a JWT created
 by the client and sent with an HTTP request using the DPoP header
 field. Each HTTP request requires a unique DPoP proof.

 A valid DPoP proof demonstrates to the server that the client holds
 the private key that was used to sign the DPoP proof JWT. This
 enables authorization servers to bind issued tokens to the
 corresponding public key (as described in Section 5) and for resource
 servers to verify the key-binding of tokens that it receives (see
 Section 7.1), which prevents said tokens from being used by any
 entity that does not have access to the private key.

 The DPoP proof demonstrates possession of a key and, by itself, is
 not an authentication or access control mechanism. When presented in
 conjunction with a key-bound access token as described in
 Section 7.1, the DPoP proof provides additional assurance about the
 legitimacy of the client to present the access token. However, a
 valid DPoP proof JWT is not sufficient alone to make access control
 decisions.

4.1. The DPoP HTTP Header

 A DPoP proof is included in an HTTP request using the following
 request header field.

 DPoP A JWT that adheres to the structure and syntax of Section 4.2.

 Figure 2 shows an example DPoP HTTP header field (with ’\’ line
 wrapping per RFC 8792).

Fett, et al. Expires 15 October 2023 [Page 8]

Internet-Draft OAuth DPoP April 2023

 DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg\
 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

 Figure 2: Example DPoP header

 Note that per [RFC9110] header field names are case-insensitive; so
 DPoP, DPOP, dpop, etc., are all valid and equivalent header field
 names. Case is significant in the header field value, however.

 The DPoP HTTP header field value uses the token68 syntax defined in
 Section 11.2 of [RFC9110] (repeated below in Figure 3 for ease of
 reference).

 DPoP = token68
 token68 = 1*(ALPHA / DIGIT /
 "-" / "." / "_" / "˜" / "+" / "/") *"="

 Figure 3: DPoP header field ABNF

4.2. DPoP Proof JWT Syntax

 A DPoP proof is a JWT ([RFC7519]) that is signed (using JSON Web
 Signature (JWS) [RFC7515]) with a private key chosen by the client
 (see below). The JOSE header of a DPoP JWT MUST contain at least the
 following parameters:

 * typ: with value dpop+jwt, which explicitly types the DPoP proof
 JWT as recommended in Section 3.11 of [RFC8725].
 * alg: an identifier for a JWS asymmetric digital signature
 algorithm from [IANA.JOSE.ALGS]. MUST NOT be none or an
 identifier for a symmetric algorithm (MAC).
 * jwk: representing the public key chosen by the client, in JSON Web
 Key (JWK) [RFC7517] format, as defined in Section 4.1.3 of
 [RFC7515]. MUST NOT contain a private key.

 The payload of a DPoP proof MUST contain at least the following
 claims:

 * jti: Unique identifier for the DPoP proof JWT. The value MUST be
 assigned such that there is a negligible probability that the same
 value will be assigned to any other DPoP proof used in the same
 context during the time window of validity. Such uniqueness can
 be accomplished by encoding (base64url or any other suitable

Fett, et al. Expires 15 October 2023 [Page 9]

Internet-Draft OAuth DPoP April 2023

 encoding) at least 96 bits of pseudorandom data or by using a
 version 4 UUID string according to [RFC4122]. The jti can be used
 by the server for replay detection and prevention, see
 Section 11.1.
 * htm: The value of the HTTP method (Section 9.1 of [RFC9110]) of
 the request to which the JWT is attached.
 * htu: The HTTP target URI (Section 7.1 of [RFC9110]), without query
 and fragment parts, of the request to which the JWT is attached.
 * iat: Creation timestamp of the JWT ([RFC7519], section 4.1.6]).

 When the DPoP proof is used in conjunction with the presentation of
 an access token in protected resource access, see Section 7, the DPoP
 proof MUST also contain the following claim:

 * ath: hash of the access token. The value MUST be the result of a
 base64url encoding (as defined in Section 2 of [RFC7515]) the
 SHA-256 [SHS] hash of the ASCII encoding of the associated access
 token’s value.

 When the authentication server or resource server provides a DPoP-
 Nonce HTTP header in a response (see Section 8, Section 9), the DPoP
 proof MUST also contain the following claim:

 * nonce: A recent nonce provided via the DPoP-Nonce HTTP header.

 A DPoP proof MAY contain other JOSE header parameters or claims as
 defined by extension, profile, or deployment specific requirements.

 Figure 4 is a conceptual example showing the decoded content of the
 DPoP proof in Figure 2. The JSON of the JWT header and payload are
 shown, but the signature part is omitted. As usual, line breaks and
 extra spaces are included for formatting and readability.

Fett, et al. Expires 15 October 2023 [Page 10]

Internet-Draft OAuth DPoP April 2023

 {
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P-256"
 }
 }
 .
 {
 "jti":"-BwC3ESc6acc2lTc",
 "htm":"POST",
 "htu":"https://server.example.com/token",
 "iat":1562262616
 }

 Figure 4: Example JWT content of a DPoP proof

 Of the HTTP request, only the HTTP method and URI are included in the
 DPoP JWT, and therefore only these two message parts are covered by
 the DPoP proof. The idea is sign just enough of the HTTP data to
 provide reasonable proof-of-possession with respect to the HTTP
 request. This design approach of using only a minimal subset of the
 HTTP header data is to avoid the substantial difficulties inherent in
 attempting to normalize HTTP messages. Nonetheless, DPoP proofs can
 be extended to contain other information of the HTTP request (see
 also Section 11.7).

4.3. Checking DPoP Proofs

 To validate a DPoP proof, the receiving server MUST ensure that

 1. there is not more than one DPoP HTTP request header field,
 2. the DPoP HTTP request header field value is a single well-formed
 JWT,
 3. all required claims per Section 4.2 are contained in the JWT,
 4. the typ JOSE header parameter has the value dpop+jwt,
 5. the alg JOSE header parameter indicates a registered asymmetric
 digital signature algorithm [IANA.JOSE.ALGS], is not none, is
 supported by the application, and is acceptable per local
 policy,
 6. the JWT signature verifies with the public key contained in the
 jwk JOSE header parameter,
 7. the jwk JOSE header parameter does not contain a private key,
 8. the htm claim matches the HTTP method of the current request,

Fett, et al. Expires 15 October 2023 [Page 11]

Internet-Draft OAuth DPoP April 2023

 9. the htu claim matches the HTTP URI value for the HTTP request in
 which the JWT was received, ignoring any query and fragment
 parts,
 10. if the server provided a nonce value to the client, the nonce
 claim matches the server-provided nonce value,
 11. the creation time of the JWT, as determined by either the iat
 claim or a server managed timestamp via the nonce claim, is
 within an acceptable window (see Section 11.1),
 12. if presented to a protected resource in conjunction with an
 access token,
 * ensure that the value of the ath claim equals the hash of
 that access token,
 * confirm that the public key to which the access token is
 bound matches the public key from the DPoP proof.

 To reduce the likelihood of false negatives, servers SHOULD employ
 Syntax-Based Normalization (Section 6.2.2 of [RFC3986]) and Scheme-
 Based Normalization (Section 6.2.3 of [RFC3986]) before comparing the
 htu claim.

 These checks may be performed in any order.

5. DPoP Access Token Request

 To request an access token that is bound to a public key using DPoP,
 the client MUST provide a valid DPoP proof JWT in a DPoP header when
 making an access token request to the authorization server’s token
 endpoint. This is applicable for all access token requests
 regardless of grant type (including, for example, the common
 authorization_code and refresh_token grant types but also extension
 grants such as the JWT authorization grant [RFC7523]). The HTTP
 request shown in Figure 5 illustrates such an access token request
 using an authorization code grant with a DPoP proof JWT in the DPoP
 header (with ’\’ line wrapping per RFC 8792).

Fett, et al. Expires 15 October 2023 [Page 12]

Internet-Draft OAuth DPoP April 2023

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg\
 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

 grant_type=authorization_code\
 &client_id=s6BhdRkqt\
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\
 &code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

 Figure 5: Token Request for a DPoP sender-constrained token using an
 authorization code

 The DPoP HTTP header field MUST contain a valid DPoP proof JWT. If
 the DPoP proof is invalid, the authorization server issues an error
 response per Section 5.2 of [RFC6749] with invalid_dpop_proof as the
 value of the error parameter.

 To sender-constrain the access token, after checking the validity of
 the DPoP proof, the authorization server associates the issued access
 token with the public key from the DPoP proof, which can be
 accomplished as described in Section 6. A token_type of DPoP MUST be
 included in the access token response to signal to the client that
 the access token was bound to its DPoP key and can be used as
 described in Section 7.1. The example response shown in Figure 6
 illustrates such a response.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token": "Kz˜8mXK1EalYznwH-LC-1fBAo.4Ljp˜zsPE_NeO.gxU",
 "token_type": "DPoP",
 "expires_in": 2677,
 "refresh_token": "Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g"
 }

 Figure 6: Access Token Response

Fett, et al. Expires 15 October 2023 [Page 13]

Internet-Draft OAuth DPoP April 2023

 The example response in Figure 6 includes a refresh token which the
 client can use to obtain a new access token when the previous one
 expires. Refreshing an access token is a token request using the
 refresh_token grant type made to the authorization server’s token
 endpoint. As with all access token requests, the client makes it a
 DPoP request by including a DPoP proof, as shown in the Figure 7
 example (with ’\’ line wrapping per RFC 8792).

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\
 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\
 WF0IjoxNTYyMjY1Mjk2fQ.pAqut2IRDm_De6PR93SYmGBPXpwrAk90e8cP2hjiaG5Qs\
 GSuKDYW7_X620BxqhvYC8ynrrvZLTk41mSRroapUA

 grant_type=refresh_token\
 &client_id=s6BhdRkqt\
 &refresh_token=Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g

 Figure 7: Token Request for a DPoP-bound Token using a Refresh Token

 When an authorization server supporting DPoP issues a refresh token
 to a public client that presents a valid DPoP proof at the token
 endpoint, the refresh token MUST be bound to the respective public
 key. The binding MUST be validated when the refresh token is later
 presented to get new access tokens. As a result, such a client MUST
 present a DPoP proof for the same key that was used to obtain the
 refresh token each time that refresh token is used to obtain a new
 access token. The implementation details of the binding of the
 refresh token are at the discretion of the authorization server.
 Since the authorization server both produces and validates its
 refresh tokens, there is no interoperability consideration in the
 specific details of the binding.

 An authorization server MAY elect to issue access tokens which are
 not DPoP bound, which is signaled to the client with a value of
 Bearer in the token_type parameter of the access token response per
 [RFC6750]. For a public client that is also issued a refresh token,
 this has the effect of DPoP-binding the refresh token alone, which
 can improve the security posture even when protected resources are
 not updated to support DPoP.

Fett, et al. Expires 15 October 2023 [Page 14]

Internet-Draft OAuth DPoP April 2023

 If the access token response contains a different token_type value
 than DPoP, the access token protection provided by DPoP is not given.
 The client MUST discard the response in this case, if this protection
 is deemed important for the security of the application; otherwise,
 it may continue as in a regular OAuth interaction.

 Refresh tokens issued to confidential clients (those having
 established authentication credentials with the authorization server)
 are not bound to the DPoP proof public key because they are already
 sender-constrained with a different existing mechanism. The OAuth
 2.0 Authorization Framework [RFC6749] already requires that an
 authorization server bind refresh tokens to the client to which they
 were issued and that confidential clients authenticate to the
 authorization server when presenting a refresh token. As a result,
 such refresh tokens are sender-constrained by way of the client
 identifier and the associated authentication requirement. This
 existing sender-constraining mechanism is more flexible (e.g., it
 allows credential rotation for the client without invalidating
 refresh tokens) than binding directly to a particular public key.

5.1. Authorization Server Metadata

 This document introduces the following authorization server metadata
 [RFC8414] parameter to signal support for DPoP in general and the
 specific JWS alg values the authorization server supports for DPoP
 proof JWTs.

 dpop_signing_alg_values_supported A JSON array containing a list of
 the JWS alg values (from the [IANA.JOSE.ALGS] registry) supported
 by the authorization server for DPoP proof JWTs.

5.2. Client Registration Metadata

 The Dynamic Client Registration Protocol [RFC7591] defines an API for
 dynamically registering OAuth 2.0 client metadata with authorization
 servers. The metadata defined by [RFC7591], and registered
 extensions to it, also imply a general data model for clients that is
 useful for authorization server implementations even when the Dynamic
 Client Registration Protocol isn’t in play. Such implementations
 will typically have some sort of user interface available for
 managing client configuration.

 This document introduces the following client registration metadata
 [RFC7591] parameter to indicate that the client always uses DPoP when
 requesting tokens from the authorization server.

 dpop_bound_access_tokens Boolean value specifying whether the client

Fett, et al. Expires 15 October 2023 [Page 15]

Internet-Draft OAuth DPoP April 2023

 always uses DPoP for token requests. If omitted, the default
 value is false.

 If true, the authorization server MUST reject token requests from
 this client that do not contain the DPoP header.

6. Public Key Confirmation

 Resource servers MUST be able to reliably identify whether an access
 token is DPoP-bound and ascertain sufficient information to verify
 the binding to the public key of the DPoP proof (see Section 7.1).
 Such a binding is accomplished by associating the public key with the
 token in a way that can be accessed by the protected resource, such
 as embedding the JWK hash in the issued access token directly, using
 the syntax described in Section 6.1, or through token introspection
 as described in Section 6.2. Other methods of associating a public
 key with an access token are possible, per agreement by the
 authorization server and the protected resource, but are beyond the
 scope of this specification.

 Resource servers supporting DPoP MUST ensure that the public key from
 the DPoP proof matches the one bound to the access token.

6.1. JWK Thumbprint Confirmation Method

 When access tokens are represented as JWTs [RFC7519], the public key
 information is represented using the jkt confirmation method member
 defined herein. To convey the hash of a public key in a JWT, this
 specification introduces the following JWT Confirmation Method
 [RFC7800] member for use under the cnf claim.

 jkt JWK SHA-256 Thumbprint Confirmation Method. The value of the
 jkt member MUST be the base64url encoding (as defined in
 [RFC7515]) of the JWK SHA-256 Thumbprint (according to [RFC7638])
 of the DPoP public key (in JWK format) to which the access token
 is bound.

 The following example JWT in Figure 8 with decoded JWT payload shown
 in Figure 9 contains a cnf claim with the jkt JWK Thumbprint
 confirmation method member. The jkt value in these examples is the
 hash of the public key from the DPoP proofs in the examples in
 Section 5. (The example uses ’\’ line wrapping per RFC 8792.)

 eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWIiOiJzb21lb25lQGV4YW1\
 wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJuYmYiOjE\
 1NjIyNjI2MTEsImV4cCI6MTU2MjI2NjIxNiwiY25mIjp7ImprdCI6IjBaY09DT1JaTll\
 5LURXcHFxMzBqWnlKR0hUTjBkMkhnbEJWM3VpZ3VBNEkifX0.3Tyo8VTcn6u_PboUmAO\
 YUY1kfAavomW_YwYMkmRNizLJoQzWy2fCo79Zi5yObpIzjWb5xW4OGld7ESZrh0fsrA

Fett, et al. Expires 15 October 2023 [Page 16]

Internet-Draft OAuth DPoP April 2023

 Figure 8: JWT containing a JWK SHA-256 Thumbprint Confirmation

 {
 "sub":"someone@example.com",
 "iss":"https://server.example.com",
 "nbf":1562262611,
 "exp":1562266216,
 "cnf":
 {
 "jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
 }

 Figure 9: JWT Claims Set with a JWK SHA-256 Thumbprint Confirmation

6.2. JWK Thumbprint Confirmation Method in Token Introspection

 OAuth 2.0 Token Introspection [RFC7662] defines a method for a
 protected resource to query an authorization server about the active
 state of an access token as well as to determine metainformation
 about the token.

 For a DPoP-bound access token, the hash of the public key to which
 the token is bound is conveyed to the protected resource as
 metainformation in a token introspection response. The hash is
 conveyed using the same cnf content with jkt member structure as the
 JWK Thumbprint confirmation method, described in Section 6.1, as a
 top-level member of the introspection response JSON. Note that the
 resource server does not send a DPoP proof with the introspection
 request and the authorization server does not validate an access
 token’s DPoP binding at the introspection endpoint. Rather the
 resource server uses the data of the introspection response to
 validate the access token binding itself locally.

 If the token_type member is included in the introspection response,
 it MUST contain the value DPoP.

 The example introspection request in Figure 10 and corresponding
 response in Figure 11 illustrate an introspection exchange for the
 example DPoP-bound access token that was issued in Figure 6.

 POST /as/introspect.oauth2 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic cnM6cnM6TWt1LTZnX2xDektJZHo0ZnNON2tZY3lhK1Rp

 token=Kz˜8mXK1EalYznwH-LC-1fBAo.4Ljp˜zsPE_NeO.gxU

Fett, et al. Expires 15 October 2023 [Page 17]

Internet-Draft OAuth DPoP April 2023

 Figure 10: Example Introspection Request

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "active": true,
 "sub": "someone@example.com",
 "iss": "https://server.example.com",
 "nbf": 1562262611,
 "exp": 1562266216,
 "cnf":
 {
 "jkt": "0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
 }

 Figure 11: Example Introspection Response for a DPoP-Bound Access
 Token

7. Protected Resource Access

 Requests to DPoP protected resources MUST include both a DPoP proof
 as per Section 4 and the access token as described in Section 7.1.
 The DPoP proof MUST include the ath claim with a valid hash of the
 associated access token.

 Binding the token value to the proof in this way prevents a proof to
 be used with multiple different access token values across different
 requests. For example, if a client holds tokens bound to two
 different resource owners, AT1 and AT2, and uses the same key when
 talking to the AS, it’s possible that these tokens could be swapped.
 Without the ath field to bind it, a captured signature applied to AT1
 could be replayed with AT2 instead, changing the rights and access of
 the intended request. This same substitution prevention remains for
 rotated access tokens within the same combination of client and
 resource owner -- a rotated token value would require the calculation
 of a new proof. This binding additionally ensures that a proof
 intended for use with the access token is not usable without an
 access token, or vice-versa.

 The resource server is required to calculate the hash of the token
 value presented and verify that it is the same as the hash value in
 the ath field as described in Section 4.3. Since the ath field value
 is covered by the DPoP proof’s signature, its inclusion binds the
 access token value to the holder of the key used to generate the
 signature.

Fett, et al. Expires 15 October 2023 [Page 18]

Internet-Draft OAuth DPoP April 2023

 Note that the ath field alone does not prevent replay of the DPoP
 proof or provide binding to the request in which the proof is
 presented, and it is still important to check the time window of the
 proof as well as the included message parameters such as htm and htu.

7.1. The DPoP Authentication Scheme

 A DPoP-bound access token is sent using the Authorization request
 header field per Section 11.6.2 of [RFC9110] using an authentication
 scheme of DPoP. The syntax of the Authorization header field for the
 DPoP scheme uses the token68 syntax defined in Section 11.2 of
 [RFC9110] (repeated below for ease of reference) for credentials.
 The ABNF notation syntax for DPoP authentication scheme credentials
 is as follows:

 token68 = 1*(ALPHA / DIGIT /
 "-" / "." / "_" / "˜" / "+" / "/") *"="

 credentials = "DPoP" 1*SP token68

 Figure 12: DPoP Authentication Scheme ABNF

 For such an access token, a resource server MUST check that a DPoP
 proof was also received in the DPoP header field of the HTTP request,
 check the DPoP proof according to the rules in Section 4.3, and check
 that the public key of the DPoP proof matches the public key to which
 the access token is bound per Section 6.

 The resource server MUST NOT grant access to the resource unless all
 checks are successful.

 Figure 13 shows an example request to a protected resource with a
 DPoP-bound access token in the Authorization header and the DPoP
 proof in the DPoP header (with ’\’ line wrapping per RFC 8792).
 Following that is Figure 14, which shows the decoded content of that
 DPoP proof. The JSON of the JWT header and payload are shown but the
 signature part is omitted. As usual, line breaks and indentation are
 included for formatting and readability.

Fett, et al. Expires 15 October 2023 [Page 19]

Internet-Draft OAuth DPoP April 2023

 GET /protectedresource HTTP/1.1
 Host: resource.example.org
 Authorization: DPoP Kz˜8mXK1EalYznwH-LC-1fBAo.4Ljp˜zsPE_NeO.gxU
 DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\
 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\
 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\
 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj\
 oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z\
 WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOCwiYXRoIjoiZlVIeU8ycjJaM0RaNTNF\
 c05yV0JiMHhXWG9hTnk1OUlpS0NBcWtzbVFFbyJ9.2oW9RP35yRqzhrtNP86L-Ey71E\
 OptxRimPPToA1plemAgR6pxHF8y6-yqyVnmcw6Fy1dqd-jfxSYoMxhAJpLjA

 Figure 13: DPoP Protected Resource Request

 {
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P-256"
 }
 }
 .
 {
 "jti":"e1j3V_bKic8-LAEB",
 "htm":"GET",
 "htu":"https://resource.example.org/protectedresource",
 "iat":1562262618,
 "ath":"fUHyO2r2Z3DZ53EsNrWBb0xWXoaNy59IiKCAqksmQEo"
 }

 Figure 14: Decoded Content of the DPoP Proof JWT in Figure 13

 Upon receipt of a request to a protected resource within the
 protection space requiring DPoP authentication, if the request does
 not include valid credentials or does not contain an access token
 sufficient for access, the server can respond with a challenge to the
 client to provide DPoP authentication information. Such a challenge
 is made using the 401 (Unauthorized) response status code ([RFC9110],
 Section 15.5.2) and the WWW-Authenticate header field ([RFC9110],
 Section 11.6.1). The server MAY include the WWW-Authenticate header
 in response to other conditions as well.

 In such challenges:

 * The scheme name is DPoP.

Fett, et al. Expires 15 October 2023 [Page 20]

Internet-Draft OAuth DPoP April 2023

 * The authentication parameter realm MAY be included to indicate the
 scope of protection in the manner described in [RFC9110],
 Section 11.5.
 * A scope authentication parameter MAY be included as defined in
 [RFC6750], Section 3.
 * An error parameter ([RFC6750], Section 3) SHOULD be included to
 indicate the reason why the request was declined, if the request
 included an access token but failed authentication. The error
 parameter values described in Section 3.1 of [RFC6750] are
 suitable as are any appropriate values defined by extension. The
 value use_dpop_nonce can be used as described in Section 9 to
 signal that a nonce is needed in the DPoP proof of subsequent
 request(s). And invalid_dpop_proof is used to indicate that the
 DPoP proof itself was deemed invalid based on the criteria of
 Section 4.3.
 * An error_description parameter ([RFC6750], Section 3) MAY be
 included along with the error parameter to provide developers a
 human-readable explanation that is not meant to be displayed to
 end-users.
 * An algs parameter SHOULD be included to signal to the client the
 JWS algorithms that are acceptable for the DPoP proof JWT. The
 value of the parameter is a space-delimited list of JWS alg
 (Algorithm) header values ([RFC7515], Section 4.1.1).
 * Additional authentication parameters MAY be used and unknown
 parameters MUST be ignored by recipients.

 For example, in response to a protected resource request without
 authentication:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: DPoP algs="ES256 PS256"

 Figure 15: HTTP 401 Response to a Protected Resource Request without
 Authentication

 And in response to a protected resource request that was rejected
 because the confirmation of the DPoP binding in the access token
 failed (with ’\’ line wrapping per RFC 8792):

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: DPoP error="invalid_token", \
 error_description="Invalid DPoP key binding", algs="ES256"

 Figure 16: HTTP 401 Response to a Protected Resource Request with
 an Invalid Token

Fett, et al. Expires 15 October 2023 [Page 21]

Internet-Draft OAuth DPoP April 2023

 Note that browser-based client applications using CORS [WHATWG.Fetch]
 only have access to CORS-safelisted response HTTP headers by default.
 In order for the application to obtain and use the WWW-Authenticate
 HTTP response header value, the server needs to make it available to
 the application by including WWW-Authenticate in the Access-Control-
 Expose-Headers response header list value.

 This authentication scheme is for origin-server authentication only.
 Therefore, this authentication scheme MUST NOT be used with the
 Proxy-Authenticate or Proxy-Authorization header fields.

 Note that the syntax of the Authorization header field for this
 authentication scheme follows the usage of the Bearer scheme defined
 in Section 2.1 of [RFC6750]. While not the preferred credential
 syntax of [RFC9110], it is compatible with the general authentication
 framework therein and was used for consistency and familiarity with
 the Bearer scheme.

7.2. Compatibility with the Bearer Authentication Scheme

 Protected resources simultaneously supporting both the DPoP and
 Bearer schemes need to update how evaluation of bearer tokens is
 performed to prevent downgraded usage of a DPoP-bound access token.
 Specifically, such a protected resource MUST reject a DPoP-bound
 access token received as a bearer token per [RFC6750].

 Section 11.6.1 of [RFC9110] allows a protected resource to indicate
 support for multiple authentication schemes (i.e., Bearer and DPoP)
 with the WWW-Authenticate header field of a 401 (Unauthorized)
 response.

 A protected resource that supports only [RFC6750] and is unaware of
 DPoP would most presumably accept a DPoP-bound access token as a
 bearer token (JWT [RFC7519] says to ignore unrecognized claims,
 Introspection [RFC7662] says that other parameters might be present
 while placing no functional requirements on their presence, and
 [RFC6750] is effectively silent on the content of the access token as
 it relates to validity). As such, a client can send a DPoP-bound
 access token using the Bearer scheme upon receipt of a WWW-
 Authenticate: Bearer challenge from a protected resource (or if it
 has prior such knowledge about the capabilities of the protected
 resource). The effect of this likely simplifies the logistics of
 phased upgrades to protected resources in their support DPoP or even
 prolonged deployments of protected resources with mixed token type
 support.

Fett, et al. Expires 15 October 2023 [Page 22]

Internet-Draft OAuth DPoP April 2023

 If a protected resource supporting both Bearer and DPoP schemes
 elects to respond with multiple WWW-Authenticate challenges,
 attention should be paid to which challenge(s) should deliver the
 actual error information. It is RECOMMENDED that the following rules
 be adhered to:

 * If no authentication information has been included with the
 request, then the challenges SHOULD NOT include an error code or
 other error information, as per [RFC6750], Section 3.1
 (Figure 17).

 * If the mechanism used to attempt authentication could be
 established unambiguously, then the corresponding challenge SHOULD
 be used to deliver error information (Figure 18).

 * Otherwise, both Bearer and DPoP challenged MAY be used to deliver
 error information (Figure 19).

 (Where needed, the following examples use ’\’ line wrapping per RFC
 8792.)

 GET /protectedresource HTTP/1.1
 Host: resource.example.org

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Bearer, DPoP algs="ES256 PS256"

 Figure 17: HTTP 401 Response to a Protected Resource Request without
 Authentication

 GET /protectedresource HTTP/1.1
 Host: resource.example.org
 Authorization: Bearer INVALID_TOKEN

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Bearer error="invalid_token", \
 error_description="Invalid token", DPoP algs="ES256 PS256"

 Figure 18: HTTP 401 Response to a Protected Resource Request with
 Invalid Authentication

Fett, et al. Expires 15 October 2023 [Page 23]

Internet-Draft OAuth DPoP April 2023

 GET /protectedresource HTTP/1.1
 Host: resource.example.org
 Authorization: Bearer Kz˜8mXK1EalYznwH-LC-1fBAo.4Ljp˜zsPE_NeO.gxU
 Authorization: DPoP Kz˜8mXK1EalYznwH-LC-1fBAo.4Ljp˜zsPE_NeO.gxU

 HTTP/1.1 400 Bad Request
 WWW-Authenticate: Bearer error="invalid_request", \
 error_description="Multiple methods used to include access token", \
 DPoP algs="ES256 PS256", error="invalid_request", \
 error_description="Multiple methods used to include access token"

 Figure 19: HTTP 400 Response to a Protected Resource Request with
 Ambiguous Authentication

7.3. Client Considerations

 Authorization including a DPoP proof may not be idempotent (depending
 on server enforcement of jti, iat and nonce claims). Consequently,
 all previously idempotent requests for protected resources that were
 previously idempotent may no longer be idempotent. It is RECOMMENDED
 that clients generate a unique DPoP proof even when retrying
 idempotent requests in response to HTTP errors generally understood
 as transient.

 Clients that encounter frequent network errors may experience
 additional challenges when interacting with servers with more strict
 nonce validation implementations.

8. Authorization Server-Provided Nonce

 This section specifies a mechanism using opaque nonces provided by
 the server that can be used to limit the lifetime of DPoP proofs.
 Without employing such a mechanism, a malicious party controlling the
 client (including potentially the end-user) can create DPoP proofs
 for use arbitrarily far in the future.

 Including a nonce value contributed by the authorization server in
 the DPoP proof MAY be used by authorization servers to limit the
 lifetime of DPoP proofs. The server determines when and if to issue
 a new DPoP nonce challenge thereby requiring the use of the nonce
 value in subsequent DPoP proofs. The logic through which the server
 makes that determination is out of scope of this document.

 An authorization server MAY supply a nonce value to be included by
 the client in DPoP proofs sent. In this case, the authorization
 server responds to requests not including a nonce with an HTTP 400
 (Bad Request) error response per Section 5.2 of [RFC6749] using
 use_dpop_nonce as the error code value. The authorization server

Fett, et al. Expires 15 October 2023 [Page 24]

Internet-Draft OAuth DPoP April 2023

 includes a DPoP-Nonce HTTP header in the response supplying a nonce
 value to be used when sending the subsequent request. Nonce values
 MUST be unpredictable. This same error code is used when supplying a
 new nonce value when there was a nonce mismatch. The client will
 typically retry the request with the new nonce value supplied upon
 receiving a use_dpop_nonce error with an accompanying nonce value.

 For example, in response to a token request without a nonce when the
 authorization server requires one, the authorization server can
 respond with a DPoP-Nonce value such as the following to provide a
 nonce value to include in the DPoP proof:

 HTTP/1.1 400 Bad Request
 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

 {
 "error": "use_dpop_nonce",
 "error_description":
 "Authorization server requires nonce in DPoP proof"
 }

 Figure 20: HTTP 400 Response to a Token Request without a Nonce

 Other HTTP headers and JSON fields MAY also be included in the error
 response, but there MUST NOT be more than one DPoP-Nonce header.

 Upon receiving the nonce, the client is expected to retry its token
 request using a DPoP proof including the supplied nonce value in the
 nonce claim of the DPoP proof. An example unencoded JWT Payload of
 such a DPoP proof including a nonce is:

 {
 "jti": "-BwC3ESc6acc2lTc",
 "htm": "POST",
 "htu": "https://server.example.com/token",
 "iat": 1562262616,
 "nonce": "eyJ7S_zG.eyJH0-Z.HX4w-7v"
 }

 Figure 21: DPoP Proof Payload Including a Nonce Value

 The nonce is opaque to the client.

 If the nonce claim in the DPoP proof does not exactly match a nonce
 recently supplied by the authorization server to the client, the
 authorization server MUST reject the request. The rejection response
 MAY include a DPoP-Nonce HTTP header providing a new nonce value to
 use for subsequent requests.

Fett, et al. Expires 15 October 2023 [Page 25]

Internet-Draft OAuth DPoP April 2023

 The intent is that clients need to keep only one nonce value and
 servers keep a window of recent nonces. That said, transient
 circumstances may arise in which the server’s and client’s stored
 nonce values differ. However, this situation is self-correcting;
 with any rejection message, the server can send the client the nonce
 value that the server wants it to use and the client can store that
 nonce value and retry the request with it. Even if the client and/or
 server discard their stored nonce values, that situation is also
 self-correcting because new nonce values can be communicated when
 responding to or retrying failed requests.

 Note that browser-based client applications using CORS [WHATWG.Fetch]
 only have access to CORS-safelisted response HTTP headers by default.
 In order for the application to obtain and use the DPoP-Nonce HTTP
 response header value, the server needs to make it available to the
 application by including DPoP-Nonce in the Access-Control-Expose-
 Headers response header list value.

8.1. Nonce Syntax

 The nonce syntax in ABNF as used by [RFC6749] (which is the same as
 the scope-token syntax) is:

 nonce = 1*NQCHAR

 Figure 22: Nonce ABNF

8.2. Providing a New Nonce Value

 It is up to the authorization server when to supply a new nonce value
 for the client to use. The client is expected to use the existing
 supplied nonce in DPoP proofs until the server supplies a new nonce
 value.

 The authorization server MAY supply the new nonce in the same way
 that the initial one was supplied: by using a DPoP-Nonce HTTP header
 in the response. The DPoP-Nonce HTTP header field uses the nonce
 syntax defined in Section 8.1. Of course, each time this happens it
 requires an extra protocol round trip.

 A more efficient manner of supplying a new nonce value is also
 defined -- by including a DPoP-Nonce HTTP header in the HTTP 200 (OK)
 response from the previous request. The client MUST use the new
 nonce value supplied for the next token request, and for all
 subsequent token requests until the authorization server supplies a
 new nonce.

Fett, et al. Expires 15 October 2023 [Page 26]

Internet-Draft OAuth DPoP April 2023

 Responses that include the DPoP-Nonce HTTP header should be
 uncacheable (e.g., using Cache-Control: no-store in response to a GET
 request) to prevent the response being used to serve a subsequent
 request and a stale nonce value being used as a result.

 An example 200 OK response providing a new nonce value is:

 HTTP/1.1 200 OK
 Cache-Control: no-store
 DPoP-Nonce: eyJ7S_zG.eyJbYu3.xQmBj-1

 Figure 23: HTTP 200 Response Providing the Next Nonce Value

9. Resource Server-Provided Nonce

 Resource servers can also choose to provide a nonce value to be
 included in DPoP proofs sent to them. They provide the nonce using
 the DPoP-Nonce header in the same way that authorization servers do
 as described in Section 8 and Section 8.2. The error signaling is
 performed as described in Section 7.1. Resource servers use an HTTP
 401 (Unauthorized) error code with an accompanying WWW-Authenticate:
 DPoP value and DPoP-Nonce value to accomplish this.

 For example, in response to a resource request without a nonce when
 the resource server requires one, the resource server can respond
 with a DPoP-Nonce value such as the following to provide a nonce
 value to include in the DPoP proof (with ’\’ line wrapping per RFC
 8792):

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: DPoP error="use_dpop_nonce", \
 error_description="Resource server requires nonce in DPoP proof"
 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

 Figure 24: HTTP 401 Response to a Resource Request without a Nonce

 Note that the nonces provided by an authorization server and a
 resource server are different and should not be confused with one
 another, since nonces will be only accepted by the server that issued
 them. Likewise, should a client use multiple authorization servers
 and/or resource servers, a nonce issued by any of them should be used
 only at the issuing server. Developers should also take care to not
 confuse DPoP nonces with the OpenID Connect [OpenID.Core] ID Token
 nonce.

Fett, et al. Expires 15 October 2023 [Page 27]

Internet-Draft OAuth DPoP April 2023

10. Authorization Code Binding to DPoP Key

 Binding the authorization code issued to the client’s proof-of-
 possession key can enable end-to-end binding of the entire
 authorization flow. This specification defines the dpop_jkt
 authorization request parameter for this purpose. The value of the
 dpop_jkt authorization request parameter is the JSON Web Key (JWK)
 Thumbprint [RFC7638] of the proof-of-possession public key using the
 SHA-256 hash function - the same value as used for the jkt
 confirmation method defined in Section 6.1.

 When a token request is received, the authorization server computes
 the JWK thumbprint of the proof-of-possession public key in the DPoP
 proof and verifies that it matches the dpop_jkt parameter value in
 the authorization request. If they do not match, it MUST reject the
 request.

 An example authorization request using the dpop_jkt authorization
 request parameter follows (with ’\’ line wrapping per RFC 8792):

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz\
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\
 &code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM\
 &code_challenge_method=S256\
 &dpop_jkt=NzbLsXh8uDCcd-6MNwXF4W_7noWXFZAfHkxZsRGC9Xs HTTP/1.1
 Host: server.example.com

 Figure 25: Authorization Request using the dpop_jkt Parameter

 Use of the dpop_jkt authorization request parameter is OPTIONAL.
 Note that the dpop_jkt authorization request parameter MAY also be
 used in combination with PKCE [RFC7636], which is recommended by
 [I-D.ietf-oauth-security-topics] as a countermeasure to authorization
 code injection. The dpop_jkt authorization request parameter only
 provides similar protections when a unique DPoP key is used for each
 authorization request.

10.1. DPoP with Pushed Authorization Requests

 When Pushed Authorization Requests (PAR, [RFC9126]) are used in
 conjunction with DPoP, there are two ways in which the DPoP key can
 be communicated in the PAR request:

 * The dpop_jkt parameter can be used as described in Section 10 to
 bind the issued authorization code to a specific key. In this
 case, dpop_jkt MUST be included alongside other authorization
 request parameters in the POST body of the PAR request.

Fett, et al. Expires 15 October 2023 [Page 28]

Internet-Draft OAuth DPoP April 2023

 * Alternatively, the DPoP header can be added to the PAR request.
 In this case, the authorization server MUST check the provided
 DPoP proof JWT as defined in Section 4.3. It MUST further behave
 as if the contained public key’s thumbprint was provided using
 dpop_jkt, i.e., reject the subsequent token request unless a DPoP
 proof for the same key is provided. This can help to simplify the
 implementation of the client, as it can "blindly" attach the DPoP
 header to all requests to the authorization server regardless of
 the type of request. Additionally, it provides a stronger
 binding, as the DPoP header contains a proof of possession of the
 private key.

 Both mechanisms MUST be supported by an authorization server that
 supports PAR and DPoP. If both mechanisms are used at the same time,
 the authorization server MUST reject the request if the JWK
 Thumbprint in dpop_jkt does not match the public key in the DPoP
 header.

 Allowing both mechanisms ensures that clients that use dpop_jkt do
 not need to distinguish between front-channel and pushed
 authorization requests, and at the same time, clients that only have
 one code path for protecting all calls to authorization server
 endpoints do not need to distinguish between requests to the PAR
 endpoint and the token endpoint.

11. Security Considerations

 In DPoP, the prevention of token replay at a different endpoint (see
 Section 2) is achieved through authentication of the server per
 [RFC6125] and binding of the DPoP proof to a certain URI and HTTP
 method. DPoP, however, has a somewhat different nature of protection
 than TLS-based methods such as OAuth Mutual TLS [RFC8705] or OAuth
 Token Binding [I-D.ietf-oauth-token-binding] (see also Section 11.1
 and Section 11.7). TLS-based mechanisms can leverage a tight
 integration between the TLS layer and the application layer to
 achieve strong message integrity, authenticity, and replay
 protection.

11.1. DPoP Proof Replay

 If an adversary is able to get hold of a DPoP proof JWT, the
 adversary could replay that token at the same endpoint (the HTTP
 endpoint and method are enforced via the respective claims in the
 JWTs). To limit this, servers MUST only accept DPoP proofs for a
 limited time after their creation (preferably only for a relatively
 brief period on the order of seconds or minutes).

Fett, et al. Expires 15 October 2023 [Page 29]

Internet-Draft OAuth DPoP April 2023

 To prevent multiple uses of the same DPoP proof, servers can store,
 in the context of the target URI, the jti value of each DPoP proof
 for the time window in which the respective DPoP proof JWT would be
 accepted. HTTP requests to the same URI for which the jti value has
 been seen before would be declined. Such a single-use check, when
 strictly enforced, provides a very strong protection against DPoP
 proof replay, but may not always be feasible in practice, e.g., when
 multiple servers behind a single endpoint have no shared state.

 In order to guard against memory exhaustion attacks, a server that is
 tracking jti values should reject DPoP proof JWTs with unnecessarily
 large jti values or store only a hash thereof.

 Note: To accommodate for clock offsets, the server MAY accept DPoP
 proofs that carry an iat time in the reasonably near future (on the
 order of seconds or minutes). Because clock skews between servers
 and clients may be large, servers MAY limit DPoP proof lifetimes by
 using server-provided nonce values containing the time at the server
 rather than comparing the client-supplied iat time to the time at the
 server. Nonces created in this way yield the same result even in the
 face of arbitrarily large clock skews.

 Server-provided nonces are an effective means for further reducing
 the chances for successful DPoP proof replay. Unlike cryptographic
 nonces, it is acceptable for clients to use the same nonce multiple
 times, and for the server to accept the same nonce multiple times.
 As long as the jti value is tracked and duplicates rejected for the
 lifetime of the nonce, there is no additional risk of token replay.

11.2. DPoP Proof Pre-Generation

 An attacker in control of the client can pre-generate DPoP proofs for
 specific endpoints arbitrarily far into the future by choosing the
 iat value in the DPoP proof to be signed by the proof-of-possession
 key. Note that one such attacker is the person who is the legitimate
 user of the client. The user may pre-generate DPoP proofs to
 exfiltrate from the machine possessing the proof-of-possession key
 upon which they were generated and copy them to another machine that
 does not possess the key. For instance, a bank employee might pre-
 generate DPoP proofs on a bank computer and then copy them to another
 machine for use in the future, thereby bypassing bank audit controls.
 When DPoP proofs can be pre-generated and exfiltrated, all that is
 actually being proved in DPoP protocol interactions is possession of
 a DPoP proof -- not of the proof-of-possession key.

 Use of server-provided nonce values that are not predictable by
 attackers can prevent this attack. By providing new nonce values at
 times of its choosing, the server can limit the lifetime of DPoP

Fett, et al. Expires 15 October 2023 [Page 30]

Internet-Draft OAuth DPoP April 2023

 proofs, preventing pre-generated DPoP proofs from being used. When
 server-provided nonces are used, possession of the proof-of-
 possession key is being demonstrated -- not just possession of a DPoP
 proof.

 The ath claim limits the use of pre-generated DPoP proofs to the
 lifetime of the access token. Deployments that do not utilize the
 nonce mechanism SHOULD NOT issue long-lived DPoP constrained access
 tokens, preferring instead to use short-lived access tokens and
 refresh tokens. Whilst an attacker could pre-generate DPoP proofs to
 use the refresh token to obtain a new access token, they would be
 unable to realistically pre-generate DPoP proofs to use a newly
 issued access token.

11.3. DPoP Nonce Downgrade

 A server MUST NOT accept any DPoP proofs without the nonce claim when
 a DPoP nonce has been provided to the client.

11.4. Untrusted Code in the Client Context

 If an adversary is able to run code in the client’s execution
 context, the security of DPoP is no longer guaranteed. Common issues
 in web applications leading to the execution of untrusted code are
 cross-site scripting and remote code inclusion attacks.

 If the private key used for DPoP is stored in such a way that it
 cannot be exported, e.g., in a hardware or software security module,
 the adversary cannot exfiltrate the key and use it to create
 arbitrary DPoP proofs. The adversary can, however, create new DPoP
 proofs as long as the client is online, and use these proofs
 (together with the respective tokens) either on the victim’s device
 or on a device under the attacker’s control to send arbitrary
 requests that will be accepted by servers.

 To send requests even when the client is offline, an adversary can
 try to pre-compute DPoP proofs using timestamps in the future and
 exfiltrate these together with the access or refresh token.

Fett, et al. Expires 15 October 2023 [Page 31]

Internet-Draft OAuth DPoP April 2023

 An adversary might further try to associate tokens issued from the
 token endpoint with a key pair under the adversary’s control. One
 way to achieve this is to modify existing code, e.g., by replacing
 cryptographic APIs. Another way is to launch a new authorization
 grant between the client and the authorization server in an iframe.
 This grant needs to be "silent", i.e., not require interaction with
 the user. With code running in the client’s origin, the adversary
 has access to the resulting authorization code and can use it to
 associate their own DPoP keys with the tokens returned from the token
 endpoint. The adversary is then able to use the resulting tokens on
 their own device even if the client is offline.

 Therefore, protecting clients against the execution of untrusted code
 is extremely important even if DPoP is used. Besides secure coding
 practices, Content Security Policy [W3C.CSP] can be used as a second
 layer of defense against cross-site scripting.

11.5. Signed JWT Swapping

 Servers accepting signed DPoP proof JWTs MUST verify that the typ
 field is dpop+jwt in the headers of the JWTs to ensure that
 adversaries cannot use JWTs created for other purposes.

11.6. Signature Algorithms

 Implementers MUST ensure that only asymmetric digital signature
 algorithms (such as ES256) that are deemed secure can be used for
 signing DPoP proofs. In particular, the algorithm none MUST NOT be
 allowed.

11.7. Request Integrity

 DPoP does not ensure the integrity of the payload or headers of
 requests. The DPoP proof only contains claims for the HTTP URI and
 method, but not, for example, the message body or general request
 headers.

 This is an intentional design decision intended to keep DPoP simple
 to use, but as described, makes DPoP potentially susceptible to
 replay attacks where an attacker is able to modify message contents
 and headers. In many setups, the message integrity and
 confidentiality provided by TLS is sufficient to provide a good level
 of protection.

 Note: While signatures covering other parts of requests are out of
 the scope of this specification, additional information to be signed
 can be added into DPoP proofs.

Fett, et al. Expires 15 October 2023 [Page 32]

Internet-Draft OAuth DPoP April 2023

11.8. Access Token and Public Key Binding

 The binding of the access token to the DPoP public key, which is
 specified in Section 6, uses a cryptographic hash of the JWK
 representation of the public key. It relies on the hash function
 having sufficient second-preimage resistance so as to make it
 computationally infeasible to find or create another key that
 produces to the same hash output value. The SHA-256 hash function
 was used because it meets the aforementioned requirement while being
 widely available.

 Similarly, the binding of the DPoP proof to the access token uses a
 hash of that access token as the value of the ath claim in the DPoP
 proof (see Section 4.2). This relies on the value of the hash being
 sufficiently unique so as to reliably identify the access token. The
 collision resistance of SHA-256 meets that requirement.

11.9. Authorization Code and Public Key Binding

 Cryptographic binding of the authorization code to the DPoP public
 key, is specified in Section 10. This binding prevents attacks in
 which the attacker captures the authorization code and creates a DPoP
 proof using a proof-of-possession key other than that held by the
 client and redeems the authorization code using that DPoP proof. By
 ensuring end-to-end that only the client’s DPoP key can be used, this
 prevents captured authorization codes from being exfiltrated and used
 at locations other than the one to which the authorization code was
 issued.

 Authorization codes can, for instance, be harvested by attackers from
 places that the HTTP messages containing them are logged. Even when
 efforts are made to make authorization codes one-time-use, in
 practice, there is often a time window during which attackers can
 replay them. For instance, when authorization servers are
 implemented as scalable replicated services, some replicas may
 temporarily not yet have the information needed to prevent replay.
 DPoP binding of the authorization code solves these problems.

 If an authorization server does not (or cannot) strictly enforce the
 single-use limitation for authorization codes and an attacker can
 access the authorization code (and if PKCE is used, the
 code_verifier), the attacker can create a forged token request,
 binding the resulting token to an attacker-controlled key. For
 example, using cross-site scripting, attackers might obtain access to
 the authorization code and PKCE parameters. Use of the dpop_jkt
 parameter prevents this attack.

Fett, et al. Expires 15 October 2023 [Page 33]

Internet-Draft OAuth DPoP April 2023

 The binding of the authorization code to the DPoP public key uses a
 JWK Thumbprint of the public key, just as the access token binding
 does. The same JWK Thumbprint considerations apply.

11.10. Hash Algorithm Agility

 The jkt confirmation method member, the ath JWT claim, and the
 dpop_jkt authorization request parameter defined herein all use the
 output of the SHA-256 hash function as their value. The use of a
 single hash function by this specification was intentional and aimed
 at simplicity and avoidance of potential security and
 interoperability issues arising from common mistakes implementing and
 deploying parameterized algorithm agility schemes. The use of a
 different hash function is not precluded, however, if future
 circumstances change making SHA-256 insufficient for the requirements
 of this specification. Should that need arise, it is expected that a
 short specification be produced that updates this one. That
 specification will likely define, using the output of a then
 appropriate hash function as the value, a new confirmation method
 member, a new JWT claim, and a new authorization request parameter.
 These items will be used in place of, or alongside, their respective
 counterparts in the same message structures and flows of the larger
 protocol defined by this specification.

11.11. Binding to Client Identity

 In cases where DPoP is used with client authentication, it is only
 bound to authentication by being coincident in the same TLS tunnel.
 Since the DPoP proof is not directly cryptographically bound to the
 authentication, it’s possible that the authentication or the DPoP
 messages were copied into the tunnel. While including the URI in the
 DPoP can partially mitigate some of this risk, modifying the
 authentication mechanism to provide cryptographic binding between
 authentication and DPoP could provide better protection. However,
 providing additional binding with authentication through the
 modification of authentication mechanisms or other means is beyond
 the scope of this specification.

12. IANA Considerations

12.1. OAuth Access Token Type Registration

 This specification requests registration of the following access
 token type in the "OAuth Access Token Types" registry
 [IANA.OAuth.Params] established by [RFC6749].

 * Type name: DPoP
 * Additional Token Endpoint Response Parameters: (none)

Fett, et al. Expires 15 October 2023 [Page 34]

Internet-Draft OAuth DPoP April 2023

 * HTTP Authentication Scheme(s): DPoP
 * Change controller: IETF
 * Specification document(s): [[this specification]]

12.2. OAuth Extensions Error Registration

 This specification requests registration of the following error
 values in the "OAuth Extensions Error" registry [IANA.OAuth.Params]
 established by [RFC6749].

 Invalid DPoP proof:

 * Name: invalid_dpop_proof
 * Usage Location: token error response, resource access error
 response
 * Protocol Extension: Demonstrating Proof of Possession (DPoP)
 * Change controller: IETF
 * Specification document(s): [[this specification]]

 Use DPoP nonce:

 * Name: use_dpop_nonce
 * Usage Location: token error response, resource access error
 response
 * Protocol Extension: Demonstrating Proof of Possession (DPoP)
 * Change controller: IETF
 * Specification document(s): [[this specification]]

12.3. OAuth Parameters Registration

 This specification requests registration of the following
 authorization request parameter in the "OAuth Parameters" registry
 [IANA.OAuth.Params] established by [RFC6749].

 * Name: dpop_jkt
 * Parameter Usage Location: authorization request
 * Change Controller: IETF
 * Reference: [[Section 10 of this specification]]

12.4. HTTP Authentication Scheme Registration

 This specification requests registration of the following scheme in
 the "Hypertext Transfer Protocol (HTTP) Authentication Scheme
 Registry" [RFC9110][IANA.HTTP.AuthSchemes]:

 * Authentication Scheme Name: DPoP
 * Reference: [[Section 7.1 of this specification]]

Fett, et al. Expires 15 October 2023 [Page 35]

Internet-Draft OAuth DPoP April 2023

12.5. Media Type Registration

 This section registers the application/dpop+jwt media type [RFC2046]
 in the IANA "Media Types" registry [IANA.MediaTypes] in the manner
 described in [RFC6838], which is used to indicate that the content is
 a DPoP JWT.

 * Type name: application
 * Subtype name: dpop+jwt
 * Required parameters: n/a
 * Optional parameters: n/a
 * Encoding considerations: binary; A DPoP JWT is a JWT; JWT values
 are encoded as a series of base64url-encoded values (some of which
 may be the empty string) separated by period (’.’) characters.
 * Security considerations: See Section 11 of [[this specification
]]
 * Interoperability considerations: n/a
 * Published specification: [[this specification]]
 * Applications that use this media type: Applications using [[this
 specification]] for application-level proof of possession
 * Fragment identifier considerations: n/a
 * Additional information:
 - File extension(s): n/a
 - Macintosh file type code(s): n/a
 * Person & email address to contact for further information: Michael
 B. Jones, mbj@microsoft.com
 * Intended usage: COMMON
 * Restrictions on usage: none
 * Author: Michael B. Jones, mbj@microsoft.com
 * Change controller: IETF
 * Provisional registration? No

12.6. JWT Confirmation Methods Registration

 This specification requests registration of the following value in
 the IANA "JWT Confirmation Methods" registry [IANA.JWT] for JWT cnf
 member values established by [RFC7800].

 * Confirmation Method Value: jkt
 * Confirmation Method Description: JWK SHA-256 Thumbprint
 * Change Controller: IETF
 * Specification Document(s): [[Section 6 of this specification]]

12.7. JSON Web Token Claims Registration

 This specification requests registration of the following Claims in
 the IANA "JSON Web Token Claims" registry [IANA.JWT] established by
 [RFC7519].

Fett, et al. Expires 15 October 2023 [Page 36]

Internet-Draft OAuth DPoP April 2023

 HTTP method:

 * Claim Name: htm
 * Claim Description: The HTTP method of the request
 * Change Controller: IETF
 * Specification Document(s): [[Section 4.2 of this specification]]

 HTTP URI:

 * Claim Name: htu
 * Claim Description: The HTTP URI of the request (without query and
 fragment parts)
 * Change Controller: IETF
 * Specification Document(s): [[Section 4.2 of this specification]]

 Access token hash:

 * Claim Name: ath
 * Claim Description: The base64url encoded SHA-256 hash of the ASCII
 encoding of the associated access token’s value
 * Change Controller: IETF
 * Specification Document(s): [[Section 4.2 of this specification]]

12.7.1. "nonce" Registry Update

 The Internet Security Glossary [RFC4949] provides a useful definition
 of nonce as a random or non-repeating value that is included in data
 exchanged by a protocol, usually for the purpose of guaranteeing
 liveness and thus detecting and protecting against replay attacks.

 However, the initial registration of the nonce claim by [OpenID.Core]
 used language that was contextually specific to that application,
 which was potentially limiting to its general applicability.

 This specification therefore requests that the entry for nonce in the
 IANA "JSON Web Token Claims" registry [IANA.JWT] be updated as
 follows to reflect that the claim can be used appropriately in other
 contexts.

 * Claim Name: nonce
 * Claim Description: Value used to associate a Client session with
 an ID Token (MAY also be used for nonce values in other
 applications of JWTs)
 * Change Controller: OpenID Foundation Artifact Binding Working
 Group - openid-specs-ab@lists.openid.net
 * Specification Document(s): Section 2 of [OpenID.Core] and [[this
 specification]]

Fett, et al. Expires 15 October 2023 [Page 37]

Internet-Draft OAuth DPoP April 2023

12.8. HTTP Message Header Field Names Registration

 This document specifies the following HTTP header fields,
 registration of which is requested in the "Hypertext Transfer
 Protocol (HTTP) Field Name Registry" registry
 [RFC9110][IANA.HTTP.Fields]:

 * Field name: DPoP

 * Status: permanent

 * Specification document: [[this specification]]

 * Field name: DPoP-Nonce

 * Status: permanent

 * Specification document: [[this specification]]

12.9. OAuth Authorization Server Metadata Registration

 This specification requests registration of the following value in
 the IANA "OAuth Authorization Server Metadata" registry
 [IANA.OAuth.Params] established by [RFC8414].

 * Metadata Name: dpop_signing_alg_values_supported
 * Metadata Description: JSON array containing a list of the JWS
 algorithms supported for DPoP proof JWTs
 * Change Controller: IETF
 * Specification Document(s): [[Section 5.1 of this specification]]

12.10. OAuth Dynamic Client Registration Metadata

 This specification requests registration of the following value in
 the IANA "OAuth Dynamic Client Registration Metadata" registry
 [IANA.OAuth.Params] established by [RFC7591].

 * Metadata Name: dpop_bound_access_tokens
 * Metadata Description: Boolean value specifying whether the client
 always uses DPoP for token requests
 * Change Controller: IETF
 * Specification Document(s): [[Section 5.2 of this specification]]

13. Normative References

Fett, et al. Expires 15 October 2023 [Page 38]

Internet-Draft OAuth DPoP April 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7638] Jones, M. and N. Sakimura, "JSON Web Key (JWK)
 Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September
 2015, <https://www.rfc-editor.org/info/rfc7638>.

Fett, et al. Expires 15 October 2023 [Page 39]

Internet-Draft OAuth DPoP April 2023

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, August 2015,
 <https://nvlpubs.nist.gov/nistpubs/FIPS/
 NIST.FIPS.180-4.pdf>.

14. Informative References

 [BREACH] "CVE-2013-3587", <https://cve.mitre.org/cgi-bin/
 cvename.cgi?name=CVE-2013-3587>.

 [CRIME] "CVE-2012-4929", <https://cve.mitre.org/cgi-bin/
 cvename.cgi?name=cve-2012-4929>.

 [Cloudbleed]
 "Incident report on memory leak caused by Cloudflare
 parser bug", <https://blog.cloudflare.com/incident-report-
 on-memory-leak-caused-by-cloudflare-parser-bug/>.

 [GitHub.Tokens]
 "Security alert: Attack campaign involving stolen OAuth
 user tokens issued to two third-party integrators",
 <https://github.blog/2022-04-15-security-alert-stolen-
 oauth-user-tokens/>.

 [Heartbleed]
 "CVE-2014-0160", <https://cve.mitre.org/cgi-bin/
 cvename.cgi?name=cve-2014-0160>.

 [I-D.ietf-oauth-security-topics]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", Work in
 Progress, Internet-Draft, draft-ietf-oauth-security-
 topics-22, 13 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 security-topics-22>.

 [I-D.ietf-oauth-token-binding]
 Jones, M., Campbell, B., Bradley, J., and W. Denniss,
 "OAuth 2.0 Token Binding", Work in Progress, Internet-

Fett, et al. Expires 15 October 2023 [Page 40]

Internet-Draft OAuth DPoP April 2023

 Draft, draft-ietf-oauth-token-binding-08, 19 October 2018,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 token-binding-08>.

 [IANA.HTTP.AuthSchemes]
 IANA, "Hypertext Transfer Protocol (HTTP) Authentication
 Scheme Registry",
 <https://www.iana.org/assignments/http-authschemes>.

 [IANA.HTTP.Fields]
 IANA, "Hypertext Transfer Protocol (HTTP) Field Name
 Registry", <https://www.iana.org/assignments/http-fields/
 http-fields.xhtml>.

 [IANA.JOSE.ALGS]
 IANA, "JSON Web Signature and Encryption Algorithms",
 <https://www.iana.org/assignments/jose/jose.xhtml#web-
 signature-encryption-algorithms>.

 [IANA.JWT] IANA, "JSON Web Token Claims",
 <https://www.iana.org/assignments/jwt>.

 [IANA.MediaTypes]
 IANA, "Media Types",
 <https://www.iana.org/assignments/media-types>.

 [IANA.OAuth.Params]
 IANA, "OAuth Parameters",
 <https://www.iana.org/assignments/oauth-parameters>.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M.B., Medeiros, B.d.,
 and C. Mortimore, "OpenID Connect Core 1.0", November
 2014,
 <https://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

Fett, et al. Expires 15 October 2023 [Page 41]

Internet-Draft OAuth DPoP April 2023

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <https://www.rfc-editor.org/info/rfc7523>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
 RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

 [RFC8705] Campbell, B., Bradley, J., Sakimura, N., and T.
 Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
 and Certificate-Bound Access Tokens", RFC 8705,
 DOI 10.17487/RFC8705, February 2020,
 <https://www.rfc-editor.org/info/rfc8705>.

 [RFC8707] Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/RFC8707,
 February 2020, <https://www.rfc-editor.org/info/rfc8707>.

 [RFC8725] Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token Best
 Current Practices", BCP 225, RFC 8725,
 DOI 10.17487/RFC8725, February 2020,
 <https://www.rfc-editor.org/info/rfc8725>.

Fett, et al. Expires 15 October 2023 [Page 42]

Internet-Draft OAuth DPoP April 2023

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [RFC9110] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/info/rfc9110>.

 [RFC9126] Lodderstedt, T., Campbell, B., Sakimura, N., Tonge, D.,
 and F. Skokan, "OAuth 2.0 Pushed Authorization Requests",
 RFC 9126, DOI 10.17487/RFC9126, September 2021,
 <https://www.rfc-editor.org/info/rfc9126>.

 [W3C.CSP] West, M., "Content Security Policy Level 3", World Wide
 Web Consortium Working Draft WD-CSP3-20181015, 15 October
 2018, <https://www.w3.org/TR/2018/WD-CSP3-20181015/>.

 [W3C.WebCryptoAPI]
 Watson, M., "Web Cryptography API", World Wide Web
 Consortium Recommendation REC-WebCryptoAPI-20170126, 26
 January 2017,
 <https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126>.

 [WHATWG.Fetch]
 WHATWG, "Fetch Living Standard", May 2022,
 <https://fetch.spec.whatwg.org/>.

Appendix A. Acknowledgements

 We would like to thank Brock Allen, Annabelle Backman, Spencer
 Balogh, Dominick Baier, Vittorio Bertocci, Jeff Corrigan, Domingos
 Creado, Andrii Deinega, William Denniss, Vladimir Dzhuvinov, Mike
 Engan, Nikos Fotiou, Mark Haine, Dick Hardt, Joseph Heenan, Bjorn
 Hjelm, Jacob Ideskog, Jared Jennings, Benjamin Kaduk, Pieter
 Kasselman, Neil Madden, Rohan Mahy, Karsten Meyer zu Selhausen,
 Nicolas Mora, Steinar Noem, Mark Nottingham, Rob Otto, Aaron Parecki,
 Michael Peck, Roberto Polli, Paul Querna, Justin Richer, Joseph
 Salowey, Rifaat Shekh-Yusef, Filip Skokan, Dmitry Telegin, Dave
 Tonge, Jim Willeke, Philippe De Ryck, and others (please let us know,
 if you’ve been mistakenly omitted) for their valuable input, feedback
 and general support of this work.

 This document originated from discussions at the 4th OAuth Security
 Workshop in Stuttgart, Germany. We thank the organizers of this
 workshop (Ralf Kusters, Guido Schmitz).

Fett, et al. Expires 15 October 2023 [Page 43]

Internet-Draft OAuth DPoP April 2023

Appendix B. Document History

 [[To be removed from the final specification]]

 -16

 * Per suggestion of the registry’s designated expert, change
 "resource error response" to "resource access error response" for
 location of the two items in the "OAuth Extensions Error
 Registration" section

 -15

 * Editorial updates from IESG review/ballot
 * Mike Jones and Daniel Fett with new email/organization info

 -14

 * Add sec considerations sub-section about binding to client
 identity
 * Explicitly say that nonces must be unpredictable
 * Change to a numbered list in ’Checking DPoP Proofs’
 * Editorial adjustments
 * Incorporated HTTP header field definition and RFC 8792 ’\’ line
 wrapping suggestions by Mark Nottingham

 -13

 * Editorial updates/fixes
 * Make sure RFC7519 is a normative reference

 -12

 * Updates from Roman Danyliw’s AD review
 * DPoP-Nonce now included in HTTP header field registration request
 * Fixed section reference to URI Scheme-Based Normalization
 * Attempt to better describe the rationale for SHA-256 only and
 expectations for how hash algorithm agility would be achieved if
 needed in the future
 * Elaborate on the use of multiple WWW-Authenticate challenges by
 protected resources
 * Fix access token request examples that were missing a client_id

 -11

 * Updates addressing outstanding shepherd review comments per side
 meeting discussions at IETF 114
 * Added more explanation of the PAR considerations

Fett, et al. Expires 15 October 2023 [Page 44]

Internet-Draft OAuth DPoP April 2023

 * Added parenthetical remark "(such as ES256)" to Signature
 Algorithms subsection
 * Added more explanation for ath
 * Added a reference to RFC8725 in mention of explicit JWT typing

 -10

 * Updates addressing some shepherd review comments
 * Update HTTP references as RFCs 723x have been superseded by RFC
 9110
 * Editorial fixes
 * Added some clarifications, etc. around nonce
 * Added client considerations subsection
 * Use bullets rather than numbers in Checking DPoP Proofs so as not
 to imply specific order
 * Added notes/reminders about browser-based client applications
 using CORS needing access to response headers
 * Added a JWT claims registry update request for "nonce" to (better)
 allow for more general use in other contexts

 -09

 * Add note/reminder about browser-based client applications using
 CORS needing access to response headers.
 * Fixed typo

 -08

 * Lots of editorial updates from WGLC feedback
 * Further clarify that either iat or nonce can be used alone in
 validating the timeliness of the proof and somewhat de-emphasize
 jti tracking

 -07

 * Registered the application/dpop+jwt media type.
 * Editorial updates/clarifications based on review feedback.
 * Added "(on the order of seconds or minutes)" to somewhat qualify
 "relatively brief period" and "reasonably near future" and give a
 general idea of expected timeframe without being overly
 prescriptive.
 * Added a step to Section 4.3 to reiterate that the jwk header
 cannot have a private key.

 -06

 * Editorial updates and fixes

Fett, et al. Expires 15 October 2023 [Page 45]

Internet-Draft OAuth DPoP April 2023

 * Changed name of client metadata parameter to
 dpop_bound_access_tokens

 -05

 * Added Authorization Code binding via the dpop_jkt parameter.
 * Described the authorization code reuse attack and how dpop_jkt
 mitigates it.
 * Enhanced description of DPoP proof expiration checking.
 * Described nonce storage requirements and how nonce mismatches and
 missing nonces are self-correcting.
 * Specified the use of the use_dpop_nonce error for missing and
 mismatched nonce values.
 * Specified that authorization servers use 400 (Bad Request) errors
 to supply nonces and resource servers use 401 (Unauthorized)
 errors to do so.
 * Added a bit more about ath and pre-generated proofs to the
 security considerations.
 * Mentioned confirming the DPoP binding of the access token in the
 list in Section 4.3.
 * Added the always_uses_dpop client registration metadata parameter.
 * Described the relationship between DPoP and Pushed Authorization
 Requests (PAR).
 * Updated references for drafts that are now RFCs.

 -04

 * Added the option for a server-provided nonce in the DPoP proof.
 * Registered the invalid_dpop_proof and use_dpop_nonce error codes.
 * Removed fictitious uses of realm from the examples, as they added
 no value.
 * State that if the introspection response has a token_type, it has
 to be DPoP.
 * Mention that RFC7235 allows multiple authentication schemes in
 WWW-Authenticate with a 401.
 * Editorial fixes.

 -03

 * Add an access token hash (ath) claim to the DPoP proof when used
 in conjunction with the presentation of an access token for
 protected resource access
 * add Untrusted Code in the Client Context section to security
 considerations
 * Editorial updates and fixes

 -02

Fett, et al. Expires 15 October 2023 [Page 46]

Internet-Draft OAuth DPoP April 2023

 * Lots of editorial updates and additions including expanding on the
 objectives, better defining the key confirmation representations,
 example updates and additions, better describing mixed bearer/dpop
 token type deployments, clarify RT binding only being done for
 public clients and why, more clearly allow for a bound RT but with
 bearer AT, explain/justify the choice of SHA-256 for key binding,
 and more
 * Require that a protected resource supporting bearer and DPoP at
 the same time must reject an access token received as bearer, if
 that token is DPoP-bound
 * Remove the case-insensitive qualification on the htm claim check
 * Relax the jti tracking requirements a bit and qualify it by URI

 -01

 * Editorial updates
 * Attempt to more formally define the DPoP Authorization header
 scheme
 * Define the 401/WWW-Authenticate challenge
 * Added invalid_dpop_proof error code for DPoP errors in token
 request
 * Fixed up and added to the IANA section
 * Added dpop_signing_alg_values_supported authorization server
 metadata
 * Moved the Acknowledgements into an Appendix and added a bunch of
 names (best effort)

 -00 [[Working Group Draft]]

 * Working group draft

 -04

 * Update OAuth MTLS reference to RFC 8705
 * Use the newish RFC v3 XML and HTML format

 -03

 * rework the text around uniqueness requirements on the jti claim in
 the DPoP proof JWT
 * make tokens a bit smaller by using htm, htu, and jkt rather than
 http_method, http_uri, and jkt#S256 respectively
 * more explicit recommendation to use mTLS if that is available
 * added David Waite as co-author
 * editorial updates

 -02

Fett, et al. Expires 15 October 2023 [Page 47]

Internet-Draft OAuth DPoP April 2023

 * added normalization rules for URIs
 * removed distinction between proof and binding
 * "jwk" header again used instead of "cnf" claim in DPoP proof
 * renamed "Bearer-DPoP" token type to "DPoP"
 * removed ability for key rotation
 * added security considerations on request integrity
 * explicit advice on extending DPoP proofs to sign other parts of
 the HTTP messages
 * only use the jkt#S256 in ATs
 * iat instead of exp in DPoP proof JWTs
 * updated guidance on token_type evaluation

 -01

 * fixed inconsistencies
 * moved binding and proof messages to headers instead of parameters
 * extracted and unified definition of DPoP JWTs
 * improved description

 -00

 * first draft

Authors’ Addresses

 Daniel Fett
 Authlete
 Email: mail@danielfett.de

 Brian Campbell
 Ping Identity
 Email: bcampbell@pingidentity.com

 John Bradley
 Yubico
 Email: ve7jtb@ve7jtb.com

 Torsten Lodderstedt
 yes.com
 Email: torsten@lodderstedt.net

 Michael Jones
 independent
 Email: michael_b_jones@hotmail.com

Fett, et al. Expires 15 October 2023 [Page 48]

Internet-Draft OAuth DPoP April 2023

 URI: https://self-issued.info/

 David Waite
 Ping Identity
 Email: david@alkaline-solutions.com

Fett, et al. Expires 15 October 2023 [Page 49]

