RAW multidomain extensions

draft-bernardos-raw-multidomain-00

Abstract

This document describes the multi-domain RAW problem and explores and proposes some extensions to enable RAW multi-domain operation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.
1. Introduction and Problem Statement

Wireless operates on a shared medium, and transmissions cannot be fully deterministic due to uncontrolled interferences, including self-induced multipath fading. RAW (Reliable and Available Wireless) is an effort to provide Deterministic Networking on across a path that include a wireless interface. RAW provides for high reliability and availability for IP connectivity over a wireless medium. The wireless medium presents significant challenges to achieve deterministic properties such as low packet error rate, bounded consecutive losses, and bounded latency. RAW extends the DetNet Working Group concepts to provide for high reliability and availability for an IP network utilizing scheduled wireless segments and other media, e.g., frequency/time-sharing physical media resources with stochastic traffic: IEEE Std. 802.15.4 timeslotted channel hopping (TSCH), 3GPP 5G ultra-reliable low latency communications (URLLC), IEEE 802.11ax/be, and L-band Digital Aeronautical Communications System (LDACS), etc. Similar to DetNet, RAW technologies aim at staying abstract to the radio layers underneath, addressing the Layer 3 aspects in support of applications requiring high reliability and availability.

As introduced in [I-D.ietf-raw-architecture], RAW separates the path computation time scale at which a complex path is recomputed from the path selection time scale at which the forwarding decision is taken for one or a few packets. RAW operates at the path selection time scale. The RAW problem is to decide, amongst the redundant solutions that are proposed by the Patch Computation Element (PCE), which one will be used for each packet to provide a Reliable and Available service while minimizing the waste of constrained resources. To that effect, RAW defines the Path Selection Engine (PSE) that is the counter-part of the PCE to perform rapid local adjustments of the forwarding tables within the diversity that the PCE has selected for the Track. The PSE enables to exploit the richer forwarding capabilities with Packet (hybrid) ARQ, Replication, Elimination and Ordering (PAREO), and scheduled transmissions at a faster time scale.
There are several use cases [I-D.ietf-raw-use-cases] where reliability and availability are key requirements for wireless heterogeneous networks. A couple of relevant examples are (i) the manufacturing sector, where a plethora of devices are interconnected and generate data that need to be reliably delivered to the control and monitoring agents; and (ii) the residential gaming, with eXtended Reality (XR).

We can refer to domains managed by a single PCE, as "single-domain RAW", where nodes are typically run and managed by a single administration entity. In this scenario, the PSE can make use of "tracks" and paths involving only the nodes belonging to this RAW domain.

There are scenarios where hosts are connected to different RAW domains and they need to communicate to each other with certain reliability and/or availability guarantees, for example in large factories where networks might be organized in domains (per production lines or building/sites), in residential environments where there are different networks (e.g., one at home and one in the garden), or even vehicular scenarios (e.g., hosts connected to different vehicles).
Figure 1: Exemplary scenario showing multiple RAW domains
Figure 1 shows an example of communication involving two RAW domains. As opposed to a single-domain scenario, where a single PCE may compute all possible "tracks" at longer time scale, and the PSE functionality may perform "subtrack" selection and optimization at a shorter time scale using all information available at the domain, multidomain scenarios pose additional burdens that are not solved yet.

Each RAW domain operates independently of the other domains. While there exist inter-PCE solutions today, allowing one domain's PCE to learn some inter-domain paths, this would not be sufficient, as the PSE of one domain would not have full visibility nor capability to act on the other domains (e.g., there are no multi-domain OAM solutions in place yet), limiting its capability to guarantee any given SLA. Therefore, there is a need to define inter-PSE coordination mechanisms across domains.

There exist today standardized solutions, such as the ones in the context of Path Computation Element (PCE), enabling computing multi-/inter-domain paths. As an example, the Hierarchical PCE (G-PCE) was defined in RFC 6805 [RFC6805] and is described hereafter. A parent PCE maintains a domain topology map that contains the child domains (seen as vertices in the topology) and their interconnections (links in the topology). The parent PCE has no information about the content of the child domains; that is, the parent PCE does not know about the resource availability within the child domains, nor does it know about the availability of connectivity across each domain because such knowledge would violate the confidentiality requirement and either would require flooding of full information to the parent (scaling issue) or would necessitate some form of aggregation. The parent PCE is used to compute a multi-domain path based on the domain connectivity information. A child PCE may be responsible for single or multiple domains and is used to compute the intra-domain path based on its own domain topology information.

Solutions like the above are not sufficient alone to solve the multi-domain RAW problem, as the PSEs need to have some additional information from the other involved domains to be sensitive/reactive to transient changes, in order to ensure a certain level of reliability and availability in a multi-domain wireless heterogeneous mesh network.

Within a single domain, the RAW framework architecture works, by having the PCE in charge of computing the paths (tracks) and the PSE(s) taking the short time decisions of which sub-tracks to use. Note that the PSE is assumed to be either a distributed functionality (performed by every RAW router of the path, which takes forwarding decisions based on the local and OAM information that they have), or
a centralized functionality played by the entry (ingress) router in
the domain (note that if there are multiple ingress nodes, then there
might be multiple PSEs), which then performs source routing.

In scenarios with multiple connected RAW domains, running
uncoordinated RAW solutions in each domain is not sufficient. PSEs
would need to have global end-to-end information as well as be
capable of running OAM mechanisms [I-D.ietf-raw-oam-support] to
monitor the quality of the selected paths.

2. Terminology

The following terms used in this document are defined by the IETF:

PAREO. Packet (hybrid) ARQ, Replication, Elimination and
Ordering. PAREO is a superset Of DetNet’s PREOF that includes
radio-specific techniques such as short range broadcast, MUMIMO,
constructive interference and overhearing, which can be leveraged
separately or combined to increase the reliability.

PSE. The Path Selection Engine (PSE) is the counter-part of the
PCE to perform rapid local adjustments of the forwarding tables
within the diversity that the PCE has selected for the Track. The
PSE enables to exploit the richer forwarding capabilities with
PAREO and scheduled transmissions at a faster time scale over the
smaller domain that is the Track, in either a loose or a strict
fashion.

3. RAW multi-domain extensions

Here we specify the new mechanisms and signaling extensions to enable
inter-domain RAW connectivity.
Figure 2: Multi-domain RAW signaling

Figure 2 shows a signaling flow diagram, taking as baseline scenario the one shown in Figure 1, where host1 (connected to node1-2) wants to communicate with host2 (connected to node2-3). An ingress RAW node (node1-2) gets a request for connectivity, with a given destination RAW node (node2-3) and the desired SLA in terms of reliability and availability. The source and/or destination RAW nodes might be hosts. We next explain each of the steps illustrated in the figure:

1. Path compute req (src=node1-2, dst=node2-3, SLA)
2. Path compute req (src={node2-1,node2-2}, dst=node2-3)
3. Path compute resp ((tracks2),(links_quality))
4. Path compute resp ({{tracks1},{tracks2}}, PSE={node2-1,node2-2}, {SLA1,SLA2})
5. RAW inter-domain path ({{tracks1,tracks2}},{SLA1,SLA2})
6. RAW inter-domain path ACK
7. RAW OAM(flow/track,SLA1)
8. RAW OAM (flow/track, metrics)
1. The ingress node plays the role of PSE (also referred to as PSE@domain1) and requests the computation of the tracks towards the destination node2-3 with the intended SLA to the PCE of the domain (PCE1).

2. PCE1 knows that the destination is in another domain (domain2) and that the PCE of the destination domain is PCE2. PCE1 also knows the ingress nodes in domain2 that are connected to domain1. How this is done is outside of the scope of this document. These nodes (node2-1 and node2-2) play the role of PSEs@domain2. PCE1 requests to PCE2 to compute the available tracks from PSEs@domain2 to the destination, and the characteristics of the links (link_quality) forming these tracks. The detail and nature of the information provided by PCE2 regarding the links might vary depending on the deployment, and is meant to be used by PCE1 and the PSE@domain1 (node1-2) to compute how to distribute the SLA among the domains.

3. PCE2 computes the tracks and responds to PCE1, including also the characteristics of the links (link_quality). Examples of potential information elements including in the link_quality are: available bandwidth, observed reliability, delay, link variability/mobility, etc.

4. PCE1 provides to the PSE@domain1 the tracks to reach the destination, as well as the split of SLAs among domain1 and domain2 (SLA1 and SLA2). An SLA, or a Quality of Service (QoS) figure, may include aspects such as, among others: max. delay, assured BW, max. Jitter, packet loss ratio, availability ratio, etc. PCE1 also provides the PSEs@domain2.

5. The PSE@domain1 sends a message to each PSE@domain2, in order to set-up a direct communication channel to provide OAM information useful to the PSE@domain1 for computing the subtracks to use for the traffic. This message includes the SLA that each domain has to monitor and guarantee (SLA1 and SLA2).

6. Each of the PSEs@domain2 acknowledges the message. At this point, the communication channel is established and the PSE@domain1 can start taking decisions at a forwarding time scale regarding which paths (subtracks) to use.
7. All PSEs, at each domain, start performing OAM procedures [I-D.ietf-raw-oam-support], which are key to observe if traffic is meeting the desired SLAs (SLA1 and SLA2) and adapt the subtracks and tracks if needed. OAM mechanisms can be applied in-band (sharing the traffic’s fate) or out-of band. Note that this per-domain distributed OAM is critical to ensure that the required SLAs (reliability and availability) are met by reacting on a short time scale at each of the involved domains.

8. PSEs share aggregated and pre-processed information among them to facilitate early detection of issues and computation of subtracks. If a violation of an SLA is detected, the respective PSE would notify the domain PCE and the other PSE, so a reaction measure can be taken (e.g., selecting different subtracks, taking different PAREO decisions, requesting the PCEs to recompute the paths and/or adjust the split of the SLAs across the domains).

Note that this example covers the direction host1-to-host2. If there is traffic in the opposite direction, the process has to be repeated in the reverse direction, as paths might not be bidirectional.

4. IANA Considerations

TBD.

5. Security Considerations

TBD.

6. Acknowledgments

This work has been partially supported by the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU through the UNICO 5G I+D 6G-DATADRIVEN-04.

7. Informative References

[I-D.ietf-raw-architecture]

[I-D.ietf-raw-oam-support]
Theoleyre, F., Papadopoulos, G. Z., Mirsky, G., and C. J. Bernardos, "Operations, Administration and Maintenance (OAM) features for RAW", Work in Progress, Internet-Draft,

[I-D.ietf-raw-use-cases]

Authors’ Addresses

Carlos J. Bernardos
Universidad Carlos III de Madrid
Av. Universidad, 30
28911 Leganes, Madrid
Spain
Phone: +34 91624 6236
Email: cjbc@it.uc3m.es
URI: http://www.it.uc3m.es/cjbc/

Alain Mourad
InterDigital Europe
Email: Alain.Mourad@InterDigital.com
URI: http://www.InterDigital.com/
Abstract

Reliable and Available Wireless (RAW) provides for high reliability and availability for IP connectivity across any combination of wired and wireless network segments. The RAW Architecture extends the DetNet Architecture and other standard IETF concepts and mechanisms to adapt to the specific challenges of the wireless medium. This document defines an architecture element for the RAW data plane, in the form of an OODA loop, that optimizes the use of constrained spectrum and energy while maintaining the expected connectivity properties. The loop involves OAM, PCE, and PREOF extensions, and a new component called the Path Selection Engine (PSE).

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction .. 3
2. The RAW problem .. 6
 2.1. Terminology .. 6
 2.1.1. Acronyms ... 6
 2.1.2. Link and Direction ... 7
 2.1.3. Path and Tracks .. 8
 2.1.4. Deterministic Networking 10
 2.1.5. Reliability and Availability 11
 2.1.6. OAM variations ... 12
 2.2. Reliability and Availability .. 13
 2.2.1. High Availability Engineering Principles 13
 2.2.2. Applying Reliability Concepts to Networking 16
 2.2.3. Wireless Effects Affecting Reliability 16
 2.3. Routing Time Scale vs. Forwarding Time Scale 18
3. The RAW Conceptual Model ... 20
 3.1. The RAW Planes ... 20
 3.2. RAW vs. DetNet ... 22
4. The OODA Loop ... 25
 4.1. Observe: The RAW OAM .. 26
 4.2. Orient: The Path Computation Engine 27
 4.3. Decide: The Path Selection Engine 28
 4.4. Act: The PAREO Functions 30
 4.4.1. Packet Replication .. 31
 4.4.2. Packet Elimination .. 31
 4.4.3. Promiscuous Overhearing 32
 4.4.4. Constructive Interference 32
5. Security Considerations ... 33
 5.1. Layer-2 encryption .. 33
 5.2. Forced Access .. 33
6. IANA Considerations .. 33
7. Contributors ... 33
8. Acknowledgments .. 33
9. References ... 34
 9.1. Normative References .. 34
 9.2. Informative References .. 35
Authors’ Addresses .. 37

Thubert & Papadopoulos Expires 5 January 2023 [Page 2]
1. Introduction

Deterministic Networking is an attempt to emulate the properties of a serial link over a switched fabric, by providing a bounded latency and eliminating congestion loss, even when co-existing with best-effort traffic. It is getting traction in various industries including professional A/V, manufacturing, online gaming, and smartgrid automation, enabling cost and performance optimizations (e.g., vs. loads of P2P cables).

Bringing determinism in a packet network means eliminating the statistical effects of multiplexing that result in probabilistic jitter and loss. This can be approached with a tight control of the physical resources to maintain the amount of traffic within a budgeted volume of data per unit of time that fits the physical capabilities of the underlying network, and the use of time-shared resources (bandwidth and buffers) per circuit, and/or by shaping and/or scheduling the packets at every hop.

This innovation was initially introduced on wired networks, with IEEE 802.1 Time Sensitive networking (TSN) - for Ethernet LANs - and IETF DetNet. But the wired and the wireless media are fundamentally different at the physical level and in the possible abstractions that can be built for IPv6 [IPv6], more in [IPoWIRELESS]. Nevertheless, deterministic capabilities are required in a number of wireless use cases as well [RAW-USE-CASES]. With new scheduled radios such as TSCH and OFDMA [RAW-TECHNOS] being developed to provide determinism over wireless links at the lower layers, providing DetNet capabilities is now becoming possible.

Wireless networks operate on a shared medium where uncontrolled interference, including the self-induced multipath fading cause random transmission losses. Fixed and mobile obstacles and reflectors may block or alter the signal, causing transient and unpredictable variations of the throughput and packet delivery ratio (PDR) of a wireless link. This adds new dimensions to the statistical effects that affect the quality and reliability of the link. Multiple links and transmissions must be used, and the challenge is to provide enough diversity and redundancy to ensure the timely packet delivery while preserving energy and optimizing the use of the shared spectrum.

Reliable and Available Wireless (RAW) takes up the challenge of providing highly available and reliable end-to-end performances in a network with scheduled wireless segments. To defeat those additional causes of transmission delay and loss in wireless transmission, RAW requires and leverages deterministic layer-2 capabilities. Operating at the layer-3, RAW can further increase diversity in the spatial,
time, code, and frequency domains by enabling multiple link-layer wired and wireless technologies in parallel or sequentially, for a higher resilience and a wider applicability. RAW can also provide homogeneous services to critical applications beyond the boundaries of a single subnetwork, e.g., controlling the use of diverse radio access technologies to optimize the end-to-end application experience.

While the generic "Deterministic Networking Problem Statement" [RFC8557] applies to both the wired and the wireless media, the methods to achieve RAW must extend those used to support time-sensitive networking over wires, as a RAW solution has to address less consistent transmissions, energy conservation and shared spectrum efficiency.

RAW provides DetNet elements that are specialized for transporting IP flows over deterministic radios technologies such as listed in [RAW-TECHNOS]. Conceptually, RAW is agnostic to the radio layer underneath though the capability to schedule transmissions is assumed. How the PHY is programmed to do so, and whether the radio is single-hop or meshed, are unknown at the IP layer and not part of the RAW abstraction. Nevertheless, cross-layer optimizations may take place to ensure proper link awareness (think, link quality) and packet handling (think, scheduling).

The "Deterministic Networking Architecture" [RFC8655] is composed of three planes: the Application (User) Plane, the Controller Plane, and the Network Plane. The DetNet Network Plane is composed of a DetNet service sub-layer that focuses on flow protection (e.g., using redundancy) and can be fully operated at layer-3, and a DetNet forwarding sub-layer that associates the flows to the paths, ensures the availability of the necessary resources, and leverages layer-2 functionalities for timely delivery to the next DetNet system.

The RAW Architecture extends the DetNet Network Plane, to accommodate one or multiple hops of homogeneous or heterogeneous wired and wireless technologies. RAW adds reactivity to the DetNet service sub-layer to compensate the dynamics for the radio links in terms of lossiness and bandwidth. This may apply for instance to mesh networks as illustrated in Figure 3, or diverse radio access networks as illustrated in Figure 8.

RAW and DetNet route application flows that require a special treatment along the paths that will provide that treatment. This may be seen as a form of Path Aware Networking and may be subject to impediments documented in [RFC9049].
The establishment of a path is not in-scope for RAW. It may be the product of a centralized Controller Plane as described for DetNet. As opposed to wired networks, the action of installing a path over a set of wireless links may be very slow relative to the speed at which the radio conditions vary, and it makes sense in the wireless case to provide redundant forwarding solutions along a complex path (see Section 2.1.3) and to leave it to the Network Plane to select which of those forwarding solutions are to be used for a given packet based on the current conditions.

RAW distinguishes the longer time scale at which routes are computed from the the shorter forwarding time scale where per-packet decisions are made. RAW operates within the Network Plane at the forwarding time scale on one DetNet flow over a complex path delineated by a Track (see Section 2.1.3.2). The Track is preestablished and installed by means outside of the scope of RAW; it may be strict or loose depending on whether each or just a subset of the hops are observed and controlled by RAW.

The RAW Architecture is based on an abstract OODA Loop (Observe, Orient, Decide, Act). The generic concept involves:

1. Network Plane measurement protocols for Operations, Administration and Maintenance (OAM) to Observe some or all hops along a Track as well as the end-to-end packet delivery

2. Optional Controller plane elements to reports the links statistics to a Path computation Element (PCE) in a centralized controller that computes and installs the Tracks and provides meta data to Orient the routing decision

3. A Runtime distributed Path Selection Engine (PSE) that Decides which subTrack to use for the next packet(s) that are routed along the Track

4. Packet (hybrid) ARQ, Replication, Elimination and Ordering Dataplane actions that operate at the DetNet Service Layer to increase the reliability of the end-to-end transmissions. The RAW architecture also covers in-situ signaling when the decision is Acted by a node that down the Track from the PSE.

The overall OODA Loop optimizes the use of redundancy to achieve the required reliability and availability Service Level Agreement (SLA) while minimizing the use of constrained resources such as spectrum and battery.
This document presents the RAW problem and associated terminology in Section 2, and elaborates in Section 4 on the OODA loop based on the RAW conceptual model presented in Section 3.

2. The RAW problem

2.1. Terminology

RAW reuses terminology defined for DetNet in the "Deterministic Networking Architecture" [RFC8655], e.g., PREOF for Packet Replication, Elimination and Ordering Functions.

RAW also reuses terminology defined for 6TiSCH in [6TiSCH-ARCHI] such as the term Track. A Track associates a complex path with PAREO and shaping operations. The concept is agnostic to the underlying technology and applies but is not limited to any fully or partially wireless mesh. RAW specifies strict and loose Tracks depending on whether the path is fully controlled by RAW or traverses an opaque network where RAW cannot observe and control the individual hops.

RAW uses the following terminology and acronyms:

2.1.1. Acronyms

2.1.1.1. ARQ

Automatic Repeat Request, enabling an acknowledged transmission and retries. ARQ is a typical model at Layer-2 on a wireless medium. ARQ is typically implemented hop-by-hop and not end-to-end in wireless networks. Else, it introduces excessive indetermination in latency, but a limited number of retries within a bounded time may be used within end-to-end constraints.

2.1.1.2. OAM

OAM stands for Operations, Administration, and Maintenance, and covers the processes, activities, tools, and standards involved with operating, administering, managing and maintaining any system. This document uses the terms Operations, Administration, and Maintenance, in conformance with the ’Guidelines for the Use of the "OAM" Acronym in the IETF’ [RFC6291] and the system observed by the RAW OAM is the Track.
2.1.1.3. OODA

Observe, Orient, Decide, Act. The OODA Loop is a conceptual cyclic model developed by USAF Colonel John Boyd, and that is applicable in multiple domains where agility can provide benefits against brute force.

2.1.1.4. PAREO

Packet (hybrid) ARQ, Replication, Elimination and Ordering. PAREO is a superset of DetNet’s PREOF that includes radio-specific techniques such as short range broadcast, MUMIMO, PHY rate and other Modulation Coding Scheme (MCS) adaptation, constructive interference and overhearing, which can be leveraged separately or combined to increase the reliability.

2.1.2. Link and Direction

2.1.2.1. Flapping

In the context of RAW, a link flaps when the reliability of the wireless connectivity drops abruptly for a short period of time, typically of a subsecond to seconds duration.

2.1.2.2. Uplink

Connection from end-devices to a data communication equipment. In the context of wireless, uplink refers to the connection between a station (STA) and a controller (AP) or a User Equipment (UE) to a Base Station (BS) such as a 3GPP 5G gNodeB (gNB).

2.1.2.3. Downlink

The reverse direction from uplink.

2.1.2.4. Downstream

Following the direction of the flow data path along a Track.

2.1.2.5. Upstream

Against the direction of the flow data path along a Track.
2.1.3. Path and Tracks

2.1.3.1. Path

Quoting section 1.1.3 of [INT-ARCHI]:

At a given moment, all the IP datagrams from a particular source host to a particular destination host will typically traverse the same sequence of gateways. We use the term "path" for this sequence. Note that a path is uni-directional; it is not unusual to have different paths in the two directions between a given host pair.

Section 2 of [I-D.irtf-panrg-path-properties] points to a longer, more modern definition of path, which begins as follows:

A sequence of adjacent path elements over which a packet can be transmitted, starting and ending with a node. A path is unidirectional. Paths are time-dependent, i.e., the sequence of path elements over which packets are sent from one node to another may change. A path is defined between two nodes.

It follows that the general acceptance of a path is a linear sequence of links and nodes, as opposed to a multi-dimensional graph, defined by the experience of the packet that went from a node A to a node B.

With DetNet and RAW, a packet may be duplicated, fragmented and network-coded, and the various byproducts may travel different paths that are not necessarily end-to-end between A and B; we refer to that experience as a complex path. The complex path does not fit the traditional description of a path, and is subject to change from a packet to the next. Therefore we introduce below the term of a Track as the overall topology where the possible complex paths are all contained.

In the context of this document, a path is observed by following one copy or one fragment of a packet that conserves its uniqueness and integrity. For instance, if C replicates to E and F and D eliminates on the way from A to B, a packet from A to B experiences 2 paths, A->C->E->D->B and A->C->F->D->B.
2.1.3.2. Track

A networking graph that can be followed to transport packets with equivalent treatment; as opposed to the definition of a path above, a Track represents not an experience but a potential, is not necessarily a linear sequence, and is not necessarily fully traversed (flooded) by all packets of a flow. It may contain multiple paths that may overlap, fork and rejoin, for instance to enable the RAW PAREO operations.

In DetNet [RFC8655] terms, a Track has the following properties:

* A Track is a layer-3 abstraction built upon P2P IP links between routers. A router may form multiple P2P IP links over a single radio interface.

* A Track has one Ingress and one Egress nodes, which operate as DetNet Edge nodes.

* A Track is reversible, meaning that packets can be routed against the flow of data packets, e.g., to carry OAM measurements or control messages back to the Ingress.
* The vertices of the Track are DetNet Relay nodes that operate at the DetNet Service sub-layer and provide the PAREO functions.

* The topological edges of the graph are serial sequences of DetNet Transit nodes that operate at the DetNet Forwarding sub-layer.

2.1.3.3. SubTrack

A Track within a Track. The RAW PSE selects a subTrack on a per-packet or a per-collection of packets basis to provide the desired reliability for the transported flows.

2.1.3.4. Segment

A serial path formed by a topological edge of a Track. East-West Segments are oriented from Ingress (East) to Egress (West). North/South Segments can be bidirectional; to avoid loops, measures must be taken to ensure that a given packet flows either Northwards or Southwards along a bidirectional Segment, but never bounces back.

2.1.4. Deterministic Networking

This document reuses the terminology in section 2 of [RFC8557] and section 4.1.2 of [RFC8655] for deterministic networking and deterministic networks.

2.1.4.1. Flow

A collection of consecutive IP packets defined by the upper layers and signaled by the same 5 or 6-tuple, see section 5.1 of [RFC8939]. Packets of the same flow must be placed on the same Track to receive an equivalent treatment from Ingress to Egress within the Track. Multiple flows may be transported along the same Track. The subTrack that is selected for the flow may change over time under the control of the PSE.

2.1.4.2. Deterministic Flow Identifier (L2)

A tuple identified by a stream_handle, and provided by a bridge, in accordance with IEEE 802.1CB. The tuple comprises at least source MAC, destination MAC, VLAN ID, and L2 priority. Continuous streams are characterized by bandwidth and max packet size; scheduled streams are characterized by a repeating pattern of timed transmissions.
2.1.4.3. Deterministic Flow Identifier (L3)

See section 3.3 of [DetNet-DP]. The classical IP 5-tuple that identifies a flow comprises the source IP, destination IP, source port, destination port, and the upper layer protocol (ULP). DetNet uses a 6-tuple where the extra field is the DSCP field in the packet. The IPv6 flow label is not used for that purpose.

2.1.4.4. TSN

TSN stands for Time Sensitive Networking and denotes the efforts at IEEE 802 for deterministic networking, originally for use on Ethernet. Wireless TSN (WTSN) denotes extensions of the TSN work on wireless media such as the selected RAW technologies [RAW-TECHNOS].

2.1.5. Reliability and Availability

In the context of the RAW work, Reliability and Availability are defined as follows:

2.1.5.1. Service Level Agreement

In the context of RAW, an SLA (service level agreement) is a contract between a provider, the network, and a client, the application flow, about measurable metrics such as latency boundaries, consecutive losses, and packet delivery ratio (PDR).

2.1.5.2. Service Level Objective

A service level objective (SLO) is one term in the SLA, for which specific network setting and operations are implemented. For instance, a dynamic tuning of the packet redundancy will address an SLO of consecutive losses in a row by augmenting the chances of delivery of a packet that follows a loss.

2.1.5.3. Service Level Indicator

A service level indicator (SLI) measures the compliance of an SLO to the terms of the contrast. It can be for instance the statistics of individual losses and losses in a row as time series.

2.1.5.4. Reliability

Reliability is a measure of the probability that an item will perform its intended function for a specified interval under stated conditions (SLA). RAW expresses reliability in terms of Mean Time Between Failure (MTBF) and Maximum Consecutive Failures (MCF). More in [NASA].
2.1.5.5. Available

That is exempt of unscheduled outage or derivation from the terms of the SLA. A basic expectation for a RAW network is that the flow is maintained in the face of any single breakage or flapping.

2.1.5.6. Availability

Availability is a measure of the relative amount of time where a RAW Network operates in stated condition (SLA), expressed as (uptime)/(uptime+downtime). Because a serial wireless path may not be good enough to provide the required reliability, and even 2 parallel paths may not be over a longer period of time, the RAW availability implies a journey that is a lot more complex than following a serial path.

2.1.6. OAM variations

2.1.6.1. Active OAM

See [RFC7799]. In the context of RAW, Active OAM is used to observe a particular Track, subTrack, or Segment of a Track regardless of whether it is used for traffic at that time.

2.1.6.2. In-Band OAM

An active OAM packet is considered in-band for the monitored Track when it traverses the same set of links and interfaces and if the OAM packet receives the same QoS and PAREO treatment as the packets of the data flows that are injected in the Track.

2.1.6.3. Out-of-Band OAM

Out-of-band OAM is an active OAM whose path is not topologically congruent to the Track, or its test packets receive a QoS and/or PAREO treatment that is different from that of the packets of the data flows that are injected in the Track, or both.

2.1.6.4. Limited OAM

An active OAM packet is a Limited OAM packet when it observes the RAW operation over a node, a segment, or a subTrack of the Track, though not from Ingress to Egress. It is injected in the datapath and extracted from the datapath around the particular function or subnetwork (e.g., around a relay providing a service layer replication point) that is being tested.
2.1.6.5. Upstream OAM

An upstream OAM packet is an Out-of-Band OAM packet that traverses the Track from egress to ingress on the reverse direction, to capture and report OAM measurements upstream. The collection may capture all information along the whole Track, or it may only learn select data across all, or only a particular subTrack, or Segment of a Track.

2.1.6.6. Residence Time

A residence time (RT) is defined as the time period between the reception of a packet starts and the transmission of the packet begins. In the context of RAW, RT is useful for a transit node, not ingress or egress.

2.1.6.7. Additional References

[DetNet-OAM] provides additional terminology related to OAM in the context of DetNet and by extension of RAW, whereas [RFC7799] defines the Active, Passive, and Hybrid OAM methods.

2.2. Reliability and Availability

2.2.1. High Availability Engineering Principles

The reliability criteria of a critical system pervades through its elements, and if the system comprises a data network then the data network is also subject to the inherited reliability and availability criteria. It is only natural to consider the art of high availability engineering and apply it to wireless communications in the context of RAW.

There are three principles [pillars] of high availability engineering:

1. elimination of single points of failure
2. reliable crossover
3. prompt detection of failures as they occur.

These principles are common to all high availability systems, not just ones with Internet technology at the center. Examples of both non-Internet and Internet are included.
2.2.1.1. Elimination of Single Points of Failure

Physical and logical components in a system happen to fail, either as the effect of wear and tear, when used beyond acceptable limits, or due to a software bug. It is necessary to decouple component failure from system failure to avoid the latter. This allows failed components to be restored while the rest of the system continues to function.

IP Routers leverage routing protocols to compute alternate routes in case of a failure. There is a rather open-ended issue over alternate routes -- for example, when links are cabled through the same conduit, they form a shared risk link group (SRLG), and will share the same fate if the bundle is cut. The same effect can happen with virtual links that end up in a same physical transport through the games of encapsulation. In a same fashion, an interferer or an obstacle may affect multiple wireless transmissions at the same time, even between different sets of peers.

Intermediate network Nodes such as routers, switches and APs, wire bundles and the air medium itself can become single points of failure. For High Availability, it is thus required to use physically link- and Node-disjoint paths; in the wireless space, it is also required to use the highest possible degree of diversity (time, space, code, frequency, channel width) in the transmissions over the air to combat the additional causes of transmission loss.

From an economics standpoint, executing this principle properly generally increases capitalization expense because of the redundant equipment. In a constrained network where the waste of energy and bandwidth should be minimized, an excessive use of redundant links must be avoided; for RAW this means that the extra bandwidth must be used wisely and with parsimony.

2.2.1.2. Reliable Crossover

Having a backup equipment has a limited value unless it can be reliably switched into use within the down-time parameters. IP Routers execute reliable crossover continuously because the routers will use any alternate routes that are available [RFC0791]. This is due to the stateless nature of IP datagrams and the dissociation of the datagrams from the forwarding routes they take. The "IP Fast Reroute Framework" [FRR] analyzes mechanisms for fast failure detection and path repair for IP Fast-Reroute, and discusses the case of multiple failures and SRLG. Examples of FRR techniques include Remote Loop-Free Alternate [RLFA-FRR] and backup label-switched path (LSP) tunnels for the local repair of LSP tunnels using RSVP-TE [RFC4090].
Deterministic flows, on the contrary, are attached to specific paths where dedicated resources are reserved for each flow. Therefore each DetNet path must inherently provide sufficient redundancy to provide the guaranteed SLA at all times. The DetNet PREOF typically leverages 1+1 redundancy whereby a packet is sent twice, over non-congruent paths. This avoids the gap during the fast reroute operation, but doubles the traffic in the network.

In the case of RAW, the expectation is that multiple transient faults may happen in overlapping time windows, in which case the 1+1 redundancy with delayed reestablishment of the second path will not provide the required guarantees. The Data Plane must be configured with a sufficient degree of redundancy to select an alternate redundant path immediately upon a fault, without the need for a slow intervention from the controller plane.

2.2.1.3. Prompt Notification of Failures

The execution of the two above principles is likely to render a system where the user will rarely see a failure. But someone needs to in order to direct maintenance.

There are many reasons for system monitoring (FCAPS for fault, configuration, accounting, performance, security is a handy mental checklist) but fault monitoring is sufficient reason.

"Overview and Principles of Internet Traffic Engineering" [TE] discusses the importance of measurement for network protection, and provides abstract an method for network survivability with the analysis of a traffic matrix as observed by SNMP, probing techniques, FTP, IGP link state advertisements, and more.

Those measurements are needed in the context of RAW to inform the controller and make the long term reactive decision to rebuild a complex path based on statistical and aggregated information. RAW itself operates in the Network Plane at a faster time scale with live information on speed, state, etc... This live information can be obtained directly from the lower layer, e.g., using L2 triggers, read from a protocol such as the Dynamic Link Exchange Protocol (DLEP) [DLEP], or transported over multiple hops using OAM and reverse OAM, as illustrated in Figure 9.
2.2.2. Applying Reliability Concepts to Networking

The terms Reliability and Availability are defined for use in RAW in Section 2.1 and the reader is invited to read [NASA] for more details on the general definition of Reliability. Practically speaking a number of nines is often used to indicate the reliability of a data link, e.g., 5 nines indicate a Packet Delivery Ratio (PDR) of 99.999%.

This number is typical in a wired environment where the loss is due to a random event such as a solar particle that affects the transmission of a particular frame, but does not affect the previous or next frame, nor frames transmitted on other links. Note that the QoS requirements in RAW may include a bounded latency, and a packet that arrives too late is a fault and not considered as delivered.

For a periodic networking pattern such as an automation control loop, this number is proportional to the Mean Time Between Failures (MTBF). When a single fault can have dramatic consequences, the MTBF expresses the chances that the unwanted fault event occurs. In data networks, this is rarely the case. Packet loss cannot never be fully avoided and the systems are built to resist to one loss, e.g., using redundancy with Retries (HARQ) or Packet Replication and Elimination (PRE), or, in a typical control loop, by linear interpolation from the previous measurements.

But the linear interpolation method cannot resist multiple consecutive losses, and a high MTBF is desired as a guarantee that this will not happen, IOW that the number of losses-in-a-row can be bounded. In that case, what is really desired is a Maximum Consecutive Failures (MCF). If the number of losses in a row passes the MCF, the control loop has to abort and the system, e.g., the production line, may need to enter an emergency stop condition.

Engineers that build automated processes may use the network reliability expressed in nines or as an MTBF as a proxy to indicate an MCF, e.g., as described in section 7.4 of the "Deterministic Networking Use Cases" [RFC8578].

2.2.3. Wireless Effects Affecting Reliability

In contrast with wired networks, errors in transmission are the predominant source of packet loss in wireless networks.

The root cause for the loss may be of multiple origins, calling for the use of different forms of diversity:

- **Multipath Fading** A destructive interference by a reflection of the
original signal.

A radio signal may be received directly (line-of-sight) and/or as a reflection on a physical structure (echo). The reflections take a longer path and are delayed by the extra distance divided by the speed of light in the medium. Depending on the frequency, the echo lands with a different phase which may add up to (constructive interference) or cancel the direct signal (destructive interference).

The affected frequencies depend on the relative position of the sender, the receiver, and all the reflecting objects in the environment. A given hop will suffer from multipath fading for multiple packets in a row till a physical movement changes the reflection patterns.

Co-channel Interference Energy in the spectrum used for the transmission confuses the receiver.

The wireless medium itself is a Shared Risk Link Group (SRLG) for nearby users of the same spectrum, as an interference may affect multiple co-channel transmissions between different peers within the interference domain of the interferer, possibly even when they use different technologies.

Obstacle in Fresnel Zone The optimal transmission happens when the Fresnel Zone between the sender and the receiver is free of obstacles.

As long as a physical object (e.g., a metallic trolley between peers) that affects the transmission is not removed, the quality of the link is affected.

In an environment that is rich of metallic structures and mobile objects, a single radio link will provide a fuzzy service, meaning that it cannot be trusted to transport the traffic reliably over a long period of time.

Transmission losses are typically not independent, and their nature and duration are unpredictable; as long as a physical object (e.g., a metallic trolley between peers) that affects the transmission is not removed, or as long as the interferer (e.g., a radar) keeps transmitting, a continuous stream of packets will be affected.

The key technique to combat those unpredictable losses is diversity. Different forms of diversity are necessary to combat different causes of loss and the use of diversity must be maximized to optimize the PDR.
A single packet may be sent at different times (time diversity) over diverse paths (spatial diversity) that rely on diverse radio channels (frequency diversity) and diverse PHY technologies, e.g., narrowband vs. spread spectrum, or diverse codes. Using time diversity will defeat short-term interferences; spatial diversity combats very local causes such as multipath fading; narrowband and spread spectrum are relatively innocuous to one another and can be used for diversity in the presence of the other.

2.3. Routing Time Scale vs. Forwarding Time Scale

With DetNet, the Controller Plane Function (CPF) handles the routing computation and maintenance. With RAW, the CPF also performs the PSE orientation, proposing SubTracks to use in response to network events. The CPF can be centralized in a PCE, and can reside outside the network. This is how the remainder of this document depicts it, though the CPF could be implemented otherwise without affecting the architecture. In a wireless mesh, the path to the PCE can be expensive and slow, possibly going across the whole mesh and back. Reaching to the PCE can also be slow in regards to the speed of events that affect the forwarding operation at the radio layer.

Due to that cost and latency, the Controller Plane is not expected to be sensitive/reactive to transient changes. The abstraction of a link at the routing level is expected to use statistical metrics that aggregate the behavior of a link over long periods of time, and represent its properties as shades of gray as opposed to numerical values such as a link quality indicator, or a boolean value for either up or down.
In the case of wireless, the changes that affect the forwarding decision can happen frequently and often for short durations, e.g., a mobile object moves between a transmitter and a receiver, and will cancel the line of sight transmission for a few seconds, or a radar measures the depth of a pool and interferes on a particular channel for a split second.

There is thus a desire to separate the long term computation of the route and the short term forwarding decision. In that model, the routing operation computes a complex Track that enables multiple Non-Equal Cost Multi-Path (N-ECMP) forwarding solutions, and leaves it to the Data Plane to make the per-packet decision of which of these possibilities should be used.

In the wired world, and more specifically in the context of Traffic Engineering (TE), an alternate path can be used upon the detection of a failure in the main path, e.g., using OAM in MPLS-TP or BFD over a
collection of SD-WAN tunnels. RAW formalizes a forwarding time scale that is an order(s) of magnitude shorter than the controller plane routing time scale, and separates the protocols and metrics that are used at both scales. Routing can operate on long term statistics such as delivery ratio over minutes to hours, but as a first approximation can ignore flapping. On the other hand, the RAW forwarding decision is made at the scale of the packet rate, and uses information that must be pertinent at the present time for the current transmission(s).

3. The RAW Conceptual Model

RAW inherits the conceptual model described in section 4 of the DetNet Architecture [RFC8655]. RAW extends the DetNet service layer to provide additional agility against transmission loss.

3.1. The RAW Planes

A RAW Network Plane may be strict or loose, depending on whether RAW observes and takes actions on all hops or not. For instance, the packets between two wireless entities may be relayed over a wired infrastructure such as a Wi-Fi extended service set (ESS) or a 5G Core; in that case, RAW observes and controls the transmission over the wireless first and last hops, as well as end-to-end metrics such as latency, jitter, and delivery ratio. This operation is loose since the structure and properties of the wired infrastructure are ignored, and may be either controlled by other means such as DetNet/TSN, or neglected in the face of the wireless hops.

A Controller Plane Function (CPF) called the Path Computation Element (PCE) [RFC4655] interacts with RAW Nodes over a Southbound API. The RAW Nodes are DetNet relays that are capable of additional diversity mechanisms and measurement functions related to the radio interface, in particular the PAREO diversity mechanisms. RAW leverages a CPF that operates inside the RAW Nodes (typically the Ingress Edge Nodes) to dynamically adapt the path of the packets and optimizes the resource usage.

The PCE defines a complex Track between an Ingress End System and an Egress End System, and indicates to the RAW Nodes where the PAREO operations may be actioned in the Network Plane. The Track may be expressed loosely to enable traversing a non-RAW subnetwork. In that case, the expectation is that the non-RAW subnetwork can be neglected in the RAW computation, that is, considered infinitely fast, reliable and/or available in comparison with the links between RAW nodes.
The Link-Layer metrics are reported to the PCE in a time-aggregated, e.g., statistical fashion. Example Link-Layer metrics include typical Link bandwidth (the medium speed depends dynamically on the PHY mode), number of flows (bandwidth that can be reserved for a flow depends on the number and size of flows sharing the spectrum) and average and mean squared deviation of availability and reliability figures such as Packet Delivery Ratio (PDR) over long periods of time.

Based on those metrics, the PCE installs the Track with enough redundant forwarding solutions to ensure that the Network Plane can reliably deliver the packets within a System Level Agreement (SLA) associated to the flows that it transports. The SLA defines end-to-end reliability and availability requirements, where reliability may be expressed as a successful delivery in order and within a bounded delay of at least one copy of a packet.

Depending on the use case and the SLA, the Track may comprise non-RAW segments, either interleaved inside the Track, or all the way to the Egress End Node (e.g., a server in the Internet). RAW observes the Lower-Layer Links between RAW nodes (typically, radio links) and the end-to-end Network Layer operation to decide at all times which of the PAREO diversity schemes is actioned by which RAW Nodes.

Once a Track is established, per-segment and end-to-end reliability and availability statistics are periodically reported to the PCE to assure that the SLA can be met or have it recompute the Track if not.
3.2. RAW vs. DetNet

RAW leverages the DetNet Forwarding sub-layer and requires the support of in-situ OAM in DetNet Transit Nodes (see fig 3 of [RFC8655] for the dynamic acquisition of link capacity and state to maintain a strict RAW service, end-to-end, over a DetNet Network.

RAW extends the DetNet Stack (see fig 4 of [RFC8655]) with additional functionality at the DetNet Service sub-layer for the PSE operation. PREOF is extended with the PAREO capabilities (see Section 4.4) and the RAW PAREO Actuator manages dynamically the PAREO operations. The RAW Service sub-layer also adds the OAM Propagator that (re)generates the OAM information as it is formed and propagated In-Band or Out-of-Band. The RAW Service sub-layer may be present in DetNet Edge and Relay Nodes, though the PAREO Actuator has no operation in the Egress Edge Node.

RAW also adds a Control sub-layer that operates in the DetNet Controller Plane. The RAW Control sub-layer typically runs only in the DetNet Ingress Edge Node or End System, though it may also run in DetNet Relay Nodes when the RAW Control sub-layer is distributed along the Track. The RAW Control sub-layer functionality includes the PSE that decides the subTrack for the next packets of a flows and controls the PAREO Actuators along the subTrack through specific signaling, and the OAM Supervisor that triggers, and learns from, OAM observations, and feeds the PSE for its next decision.
There are 2 main proposed models to deploy RAW and DetNet. In the first model (strict) illustrated in Figure 5, RAW operates over a continuous DetNet Service end-to-end between the Ingress and the Egress Edge Nodes or End Systems.

A minimal Forwarding sub-layer service is provided at all DetNet Nodes to ensure that the OAM information flows. Relay Nodes may or may not support RAW services, and the Edge nodes do support RAW. DetNet guarantees such as latency are provided end-to-end, and RAW supports the DetNet Service to optimize the use of resources.
In the second model (loose), illustrated in Figure 6, RAW operates over a partial DetNet Service where typically only the Ingress and the Egress End Systems support RAW. The DetNet Domain may extend beyond the Ingress node, or there may be a DetNet domain starting at an Ingress Edge Node at the first hop after the End System.

In the loose model, RAW cannot observe the hops in network, and the path beyond the first hop is opaque; RAW can still observe the end-to-end behavior and use Layer-3 measurements to decide whether to replicate a packet and select the first hop interface(s).
4. The OODA Loop

The RAW Architecture is structured as an OODA Loop (Observe, Orient, Decide, Act). It involves:

1. Network Plane measurement protocols for Operations, Administration and Maintenance (OAM) to Observe some or all hops along a Track as well as the end-to-end packet delivery, more in Section 4.1;

2. Controller plane elements to report the links statistics to a Path computation Element (PCE) in a centralized controller that computes and installs the Tracks and provides meta data to Orient the routing decision, more in Section 4.2;

3. A Runtime distributed Path Selection Engine (PSE) that Decides which subTrack to use for the next packet(s) that are routed along the Track, more in Section 4.3;

4. Packet (hybrid) ARQ, Replication, Elimination and Ordering Dataplane actions that operate at the DetNet Service Layer to increase the reliability of the end-to-end transmission. The RAW architecture also covers in-situ signaling when the decision is Acted by a node that down the Track from the PSE, more in Section 4.4.
The overall OODA Loop optimizes the use of redundancy to achieve the required reliability and availability Service Level Agreement (SLA) while minimizing the use of constrained resources such as spectrum and battery.

4.1. Observe: The RAW OAM

RAW In-situ OAM operation in the Network Plane may observe either a full Track or subTracks that are being used at this time. As packets may be load balanced, replicated, eliminated, and / or fragmented for Network Coding (NC) forward error correction (FEC), the RAW In-situ operation needs to be able to signal which operation occurred to an individual packet.

Active RAW OAM may be needed to observe the unused segments and evaluate the desirability of a rerouting decision.

Finally, the RAW Service Layer Assurance may observe the individual PAREO operation of a relay node to ensure that it is conforming; this might require injecting an OAM packet at an upstream point inside the Track and extracting that packet at another point downstream before it reaches the egress.

This observation feeds the RAW PSE that makes the decision on which PAREO function is actioned at which RAW Node, for one a small continuous series of packets.
In the case of a End-to-End Protection in a Wireless Mesh, the Track is strict and congruent with the path so all links are observed.

Conversely, in the case of Radio Access Protection illustrated in Figure 8, the Track is Loose and only the first hop is observed; the rest of the path is abstracted and considered infinitely reliable. The loss if a packet is attributed to the first hop Radio Access Network (RAN), even if a particular loss effectively happens farther down the path. In that case, RAW enables technology diversity (e.g. Wi-Fi and 5G) which in turn improves the diversity in spectrum usage.

The Links that are not observed by OAM are opaque to it, meaning that the OAM information is carried across and possibly echoed as data, but there is no information capture in intermediate nodes. In the example above, the Internet is opaque and not controlled by RAW; still the RAW OAM measures the end-to-end latency and delivery ratio for packets sent via each if RAN 1, RAN 2 and RAN 3, and determines whether a packet should be sent over either or a collection of those access links.

4.2. Orient: The Path Computation Engine

RAW separates the long time scale at which a Track is elaborated and installed, from the short time scale at which the forwarding decision is taken for one or a few packets (see in Section 2.3) that will experience the same path until the network conditions evolve and another path is selected within the same Track.
The Track computation is out of scope, but RAW expects that the Controller plane protocol that installs the Track also provides related knowledge in the form of meta data about the links, segments and possible subTracks. That meta data can be a pre-digested statistical model, and may include prediction of future flaps and packet loss, as well as recommended actions when that happens.

The meta data may include:

* Pre-Determined subTracks to match predictable error profiles
* Pre-Trained models
* Link Quality Statistics and their projected evolution

The Track is installed with measurable objectives that are computed by the PCE to achieve the RAW SLA. The objectives can be expressed as any of maximum number of packet lost in a row, bounded latency, maximal jitter, maximum number of interleaved out of order packets, average number of copies received at the elimination point, and maximal delay between the first and the last received copy of the same packet.

4.3. Decide: The Path Selection Engine

The RAW OODA Loop operates at the path selection time scale to provide agility vs. the brute force approach of flooding the whole Track. The OODA Loop controls, within the redundant solutions that are proposed by the PCE, which will be used for each packet to provide a Reliable and Available service while minimizing the waste of constrained resources.

To that effect, RAW defines the Path Selection Engine (PSE) that is the counterpart of the PCE to perform rapid local adjustments of the forwarding tables within the diversity that the PCE has selected for the Track. The PSE enables to exploit the richer forwarding capabilities with PAREO and scheduled transmissions at a faster time scale over the smaller domain that is the Track, in either a loose or a strict fashion.

Compared to the PCE, the PSE operates on metrics that evolve faster, but that need to be advertised at a fast rate but only locally, within the Track. The forwarding decision may also change rapidly, but with a scope that is also contained within the Track, with no visibility to the other Tracks and flows in the network. This is as opposed to the PCE that must observe the whole network and optimize all the Tracks globally, which can only be done at a slow pace and using long-term statistical metrics, as presented in Table 1.
Table 1: PCE vs. PSE

The PSE sits in the DetNet Service sub-Layer of Edge and Relay Nodes. On the one hand, it operates on the packet flow, learning the Track and path selection information from the packet, possibly making local decision and retagging the packet to indicate so. On the other hand, the PSE interacts with the lower layers and with its peers to obtain up-to-date information about its radio links and the quality of the overall Track, respectively, as illustrated in Figure 9.

Figure 9: PSE
4.4. Act: The PAREO Functions

RAW may control whether and how to use packet replication and elimination (PRE), fragmentation, and network coding, and how the lower layers performs Automatic Repeat reQuest (ARQ), Hybrid ARQ (HARQ) that includes Forward Error Correction (FEC), and other wireless-specific techniques such as overhearing and constructive interferences, in order to increase the reliability and availability of the end-to-end transmission.

Collectively, those function are called PAREO for Packet (hybrid) ARQ, Replication, Elimination and Ordering. By tuning dynamically the use of PAREO functions, RAW avoids the waste of critical resources such as spectrum and energy while providing that the guaranteed SLA, e.g., by adding redundancy only when a spike of loss is observed.

In a nutshell, PAREO establishes several paths in a network to provide redundancy and parallel transmissions to bound the end-to-end delay to traverse the network. Optionally, promiscuous listening between paths is possible, such that the Nodes on one path may overhear transmissions along the other path. Considering the scenario shown in Figure 10, many different paths are possible to traverse the network from ingress to egress. A simple way to benefit from this topology could be to use the two independent paths via Nodes A, C, E and via B, D, F. But more complex paths are possible by interleaving transmissions from the lower level of the path to the upper level.

```
         (A) -- (C) -- (E)
           /                   \
          /                     /
     Ingress = |                         | = Egress
           \                     /               \
         (B) -- (D) -- (F)
```

Figure 10: A Ladder Shape with Two Parallel Paths

PAREO may also take advantage of the shared properties of the wireless medium to compensate for the potential loss that is incurred with radio transmissions.

For instance, when the source sends to Node A, Node B may listen promiscuously and get a second chance to receive the frame without an additional transmission. Note that B would not have to listen if it already received that particular frame at an earlier timeslot in a dedicated transmission towards B.
The PAREO model can be implemented in both centralized and distributed scheduling approaches. In the centralized approach, a Path Computation Element (PCE) scheduler calculates a Track and schedules the communication. In the distributed approach, the Track is computed within the network, and signaled in the packets, e.g., using BIER-TE, Segment Routing, or a Source Routing Header.

4.4.1. Packet Replication

By employing a Packet Replication procedure, a Node forwards a copy of each data packet to more than one successor. To do so, each Node (i.e., Ingress and intermediate Node) sends the data packet multiple times as separate unicast transmissions. For instance, in Figure 11, the Ingress Node is transmitting the packet to both successors, nodes A and B, at two different times.

```
   ===> (A) => (C) => (E) ====
//      \//      \//      \//
Ingress  //\      //\      //\       Egress
\\      //      \\      //      //
   ===> (B) => (D) => (F) ====
```

Figure 11: Packet Replication

An example schedule is shown in Table 2. This way, the transmission leverages with the time and spatial forms of diversity.

<table>
<thead>
<tr>
<th>Channel</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S->A</td>
<td>S->B</td>
<td>B->C</td>
<td>B->D</td>
<td>C->F</td>
<td>E->R</td>
<td>F->R</td>
</tr>
<tr>
<td>1</td>
<td>A->C</td>
<td>A->D</td>
<td>C->E</td>
<td>D->E</td>
<td>D->F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Packet Replication: Sample schedule

4.4.2. Packet Elimination

The replication operation increases the traffic load in the network, due to packet duplications. This may occur at several stages inside the Track, and to avoid an explosion of the number of copies, a Packet Elimination procedure must be applied as well. To this aim, once a Node receives the first copy of a data packet, it discards the subsequent copies.
The logical functions of Replication and Elimination may be collocated in an intermediate Node, the Node first eliminating the redundant copies and then sending the packet exactly once to each of the selected successors.

4.4.3. Promiscuous Overhearing

Considering that the wireless medium is broadcast by nature, any neighbor of a transmitter may overhear a transmission. By employing the Promiscuous Overhearing operation, the next hops have additional opportunities to capture the data packets. In Figure 12, when Node A is transmitting to its DP (Node C), the AP (Node D) and its sibling (Node B) may decode this data packet as well. As a result, by employing correlated paths, a Node may have multiple opportunities to receive a given data packet.

Variations on the same idea such as link-layer anycast and multicast may also be used to reach more than one next-hop with a single frame.

4.4.4. Constructive Interference

Constructive Interference can be seen as the reverse of Promiscuous Overhearing, and refers to the case where two senders transmit the exact same signal in a fashion that the emitted symbols add up at the receiver and permit a reception that would not be possible with a single sender at the same PHY mode and the same power level.

Constructive Interference was proposed on 5G, Wi-Fi7 and even tested on IEEE Std 802.14.5. The hard piece is to synchronize the senders to the point that the signals are emitted at slightly different time to offset the difference of propagation delay that corresponds to the difference of distance of the transmitters to the receiver at the speed of light to the point that the symbols are superposed long enough to be recognizable.
5. Security Considerations

RAW uses all forms of diversity including radio technology and physical path to increase the reliability and availability in the face of unpredictable conditions. While this is not done specifically to defeat an attacker, the amount of diversity used in RAW makes an attack harder to achieve.

5.1. Layer-2 encryption

Radio networks typically encrypt at the MAC layer to protect the transmission. If the encryption is per pair of peers, then certain RAW operations like promiscuous overhearing become impossible.

5.2. Forced Access

RAW will typically select the cheapest collection of links that matches the requested SLA, for instance, leverage free WI-Fi vs. paid 3GPP access. By defeating the cheap connectivity (e.g., PHY-layer interference) the attacker can force an End System to use the paid access and increase the cost of the transmission for the user.

6. IANA Considerations

This document has no IANA actions.

7. Contributors

The editor wishes to thank:

Xavi Vilajosana: Wireless Networks Research Lab, Universitat Oberta de Catalunya

Remous-Aris Koutsiamanis: IMT Atlantique

Nicolas Montavont: IMT Atlantique

Rex Buddenberg: Individual contributor

Greg Mirsky: ZTE

for their contributions to the text and ideas exposed in this document.

8. Acknowledgments

The authors wish to thank Dave Cavalcanti and Fabrice Theoleyre for their in-depth reviews during the development of this document.
9. References

9.1. Normative References

[6TiSCH-ARCHI]

[INT-ARCHI]

[RAW-TECHNOS]

[RAW-USE-CASES]

9.2. Informative References

Thubert & Papadopoulos Expires 5 January 2023

Authors’ Addresses

Pascal Thubert (editor)
Cisco Systems, Inc
Building D
45 Allee des Ormes - BP1200
06254 MOUGINS - Sophia Antipolis
France
Phone: +33 497 23 26 34
Email: pthubert@cisco.com

Georgios Z. Papadopoulos
IMT Atlantique
Office B00 - 114A
2 Rue de la Chataigneraie
35510 Cesson-Sevigne - Rennes
France
Phone: +33 299 12 70 04
Email: georgios.papadopoulos@imt-atlantique.fr
Reliable and Available Wireless Framework
draft-ietf-raw-framework-01

Abstract

Reliable and Available Wireless (RAW) provides for high reliability and availability for IP connectivity over a wireless medium. The wireless medium presents significant challenges to achieve deterministic properties such as low packet error rate, bounded consecutive losses, and bounded latency. This document defines the RAW Architecture following an OODA loop that involves OAM, PCE, PSE and PAREO functions. It builds on the DetNet Architecture and discusses specific challenges and technology considerations needed to deliver DetNet service utilizing scheduled wireless segments and other media, e.g., frequency/time-sharing physical media resources with stochastic traffic.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Introduction

Wireless networks operate on a shared medium where uncontrolled interference, including the self-induced multipath fading, cause random transmission losses and add new dimensions to the statistical effects that affect reachability and packet delivery.

To defeat those additional causes of transmission delay and loss, Reliable and Available Wireless (RAW) leverages deterministic layer-2 capabilities with diversity in the spatial, time, code, technology, and frequency domains. The challenge is to provide enough diversity and redundancy to ensure the timely packet delivery while preserving energy and optimizing the use of the shared spectrum.
The "RAW Architecture" [RAW-ARCHI] document presents the RAW problem and architectural concepts such as path and Tracks to provide IPv6 [IPv6] flows with Service Level Objectives (SLO) in terms of packet delivery ratio (PDR), maximum contiguous losses or latency boundaries over wireless access and meshes.

RAW distinguishes the longer time scale at which routes are computed from the the shorter forwarding time scale where per-packet decisions are made. RAW operates within the Network Plane at the forwarding time scale on one DetNet flow over a complex path called a Track. The Track is preestablished and installed by means outside of the scope of RAW; it may be strict or loose depending on whether each or just a subset of the hops are observed and controlled by RAW.

The RAW Architecture is structured as an OODA Loop (Observe, Orient, Decide, Act). It involves:

1. Network Plane measurement protocols for Operations, Administration and Maintenance (OAM) to Observe some or all hops along a Track as well as the end-to-end packet delivery

2. Controller plane elements to report the links statistics to a Path computation Element (PCE) in a centralized controller that computes and installs the Tracks and provides meta data to Orient the routing decision

3. A Runtime distributed Path Selection Engine (PSE) that Decides which subTrack to use for the next packet(s) that are routed along the Track

4. Packet (hybrid) ARQ, Replication, Elimination and Ordering Dataplane actions that operate at the DetNet Service Layer to increase the reliability of the end-to-end transmission. The RAW architecture also covers in-situ signaling when the decision is Acted by a node that down the Track from the PSE.

The RAW Framework combines IETF specification to enable RAW Service Level Agreements (SLA) over a selected technologies [RAW-TECHNOS]. The framework implements the OODA loop to optimizes the use of redundancy while minimizing the use of constrained resources such as spectrum and battery.

2. Terminology

This document uses the terminology defined in the "RAW Architecture" [RAW-ARCHI].
3. Use Cases and Requirements Served

In order to focus on real-worlds issues and assert the feasibility of the proposed capabilities, RAW focuses on selected technologies that can be scheduled at the lower layers: IEEE Std. 802.15.4 timeslotted channel hopping (TSCH), 3GPP 5G ultra-reliable low latency communications (URLLC), IEEE 802.11ax/be where 802.11be is extreme high throughput (EHT), and L-band Digital Aeronautical Communications System (LDACS). See [RAW-TECHNOS] for more.

"Deterministic Networking Use Cases" [RFC8578] presents a number of wireless use cases including Wireless, such as application to Industrial Applications, Pro-Audio, and SmartGrid Automation. [RAW-USE-CASES] adds a number of use cases that demonstrate the need for RAW capabilities for new applications such as Pro-Gaming and drones. The use cases can be abstracted in two families, Loose Protection, e.g., protecting the first hop in Radio Access Protection and Strict Protection, e.g., providing End-to-End Protection in a wireless mesh.

3.1. Radio Access Protection

To maintain the required SLA at all times, a wireless Host may use more than one Radio Access Network (RAN) in parallel.

```
RAN 1 ----  ...  ...  ...  ...  ...
/ 
+--------+ / 
Wireless /               ..  ....  +------------+ 
Device ----- RAN 2 ----- .  Internet ...  ...  Application 
(STA/UE) -- $$$  \ ...
+--------+ $$$  \ 
|Service |
RAN n ----  ...  ...  ...  ...

*** = flapping at this time  $$$ expensive
```

Figure 1: Radio Access Protection

The RANs may be heterogeneous, e.g., 3GPP 5G [RAW-5G] and Wi-Fi [RAW-TECHNOS] for high-speed communication, in which case a Layer-3 abstraction becomes useful to select which of the RANs are used at a particular point of time, and the amount of traffic that is distributed over each RAN.
The idea is that the rest of the path to the destination(s) is protected separately (e.g., uses non-congruent paths, leverages DetNet / TSN, etc...) and is a lot more reliable, e.g., wired. In that case, RAW observes the reliability of the end-to-end operation through each of the RANs but only observes and controls the wireless operation the first hop.

A variation of that use case has a pair of wireless Hosts connected over a wired core / backbone network. In that case, RAW observes and controls the Ingress and Egress RANs, while neglecting the hops in the core. The resulting loose Track may be instantiated, e.g., using tunneling or loose source routing between the RANs.

3.2. End-to-End Protection in a Wireless Mesh

In radio technologies that support mesh networking (e.g., Wi-Fi and TSCH), a Track is a complex path with distributed PAREO capabilities. In that case, RAW operates through the multipath and makes decisions either at the Ingress or at every hop (more in Section 6).

```
A--------B-------C-----D
 /    /    /    /    \
Ingress ----M-------N--zzzzz--- Egress
 \   \    /    /    /
   P--zzz--Q-------------R

zzz = flapping now
```

Figure 2: End-to-End Protection

The Protection may be imposed by the source based on end-to-end OAM, or performed hop-by-hop, in which case the OAM must enables the intermediate Nodes to estimate the quality of the rest of the feasible paths in the remainder of the Track to the destination.

4. Related Work at The IETF

RAW intersects with protocols or practices in development at the IETF as follows:

* The Dynamic Link Exchange Protocol (DLEP) [DLEP] from [MANET] can be leveraged at each hop to derive generic radio metrics (e.g., based on LQI, RSSI, queueing delays and ETX) on individual hops, and obtain link characteristics such as speed in a timely manner.

* [detnet] provides an OAM framework with [DetNet-OAM] that applies within the DetNet dataplane described in [DetNet-DP], which is typically based on MPLS or IPv6 pseudowires.
Bidirectional Forwarding Detection [BFD] and its variants (bidirectional and remote BFD) detects faults in the path between an Ingress and an Egress forwarding engines. The art of BFD expects a serial path and needs one session per path, which makes it suited to observe a Segment it is unaware of the complexity of a track, and expects bidirectionality. to protect a path. [BFD] BFD asynchronous mode considers delivery as success whereas with DetNet and RAW, the bounded latency can be as important as the delivery itself, and delivering too late is actually a failure. Note that the BFD Demand mode with unsolicited notifications may be more suitable then the Asynchronous BFD mode. The use of the Demand mode in MPLS is analyzed in [I-D.mirsky-bfd-mpls-demand] and similar considerations could apply to IP as well.

[SPRING] and [BIER] define in-band signaling that influences the routing when decided at the head-end on the path. There’s already one RAW-related draft at BIER [BIER-PREF] more may follow. RAW will need new in-band signaling when the decision is distributed, e.g., required chances of reliable delivery to destination within latency. This signaling enables relays to tune retries and replication to meet the required SLA.

[CCAMP] defines protocol-independent metrics and parameters (measurement attributes) for describing links and paths that are required for routing and signaling in technology-specific networks. RAW would be a source of requirements for CCAMP to define metrics that are significant to the focus radios.

[IPPM] develops and maintains standard metrics that can be applied to the quality, performance, and reliability of Internet data delivery services and applications running over transport layer protocols (e.g. TCP, UDP) over IP.

5. Scope and Prerequisites

A prerequisite to the RAW operation is that an end-to-end routing function computes a complex sub-topology along which forwarding can happen between a source and one or more destinations. The concept of Track is specified in the 6TiSCH Architecture [6TISCH-ARCHI] to represent that complex sub-topology. Tracks provide a high degree of redundancy and diversity and enable the DetNet PREOF, network coding, and possibly RAW specific techniques such as PAREO, leveraging frequency diversity, time diversity, and possibly other forms of diversity as well.

How the routing operation (e.g., PCE) in the Controller Plane computes the Track is out of scope for RAW. The scope of the RAW operation is one Track, and the goal of the RAW operation is to
optimize the use of the Track at the forwarding timescale to maintain the expected SLA while optimizing the usage of constrained resources such as energy and spectrum.

Another prerequisite is that an IP link can be established over the radio with some guarantees in terms of service reliability, e.g., it can be relied upon to transmit a packet within a bounded latency and provides a guaranteed BER/PDR outside rare but existing transient outage windows that can last from split seconds to minutes. The radio layer can be programmed with abstract parameters, and can return an abstract view of the state of the Link to help the Network Layer forwarding decision (think DLEP from MANET).

How the radio interface manages its lower layers is out of control and out of scope for RAW. In the same fashion, the non-RAW portion along a loose Track is by definition out of control and out of scope for RAW. Whether it is a single hop or a mesh is also unknown and out of scope.

6. Wireless Tracks

The "6TiSCH Architecture" [6TiSCH-ARCHI] introduces the concept of Track. RAW extends the concept to any wireless mesh technology, including, e.g., Wi-Fi. A simple Track is composed of a direct sequence of reserved hops to ensure the transmission of a single packet from a source Node to a destination Node across a multihop path.

A Complex Track provides multiple N-ECMP forwarding solutions. The Complex Track enables to support multi-path redundant forwarding by employing PRE functions [RFC8655] and the ingress and within the Track. For example, a Complex Track may branch off and rejoin over non-congruent segments.

In the context of RAW, some links or segments in the Track may be reversible, meaning that they can be used in either direction. In that case, an indication in the packet signals the direction of the reversible links or segments that the packet traverses and thus places a constraint that prevents loops from occurring. An individual packet follows a destination-oriented directed acyclic graph (DODAG) towards a destination Node inside the Complex Track.

7. Flow Identification vs. Path Identification

Section 4.7 of the DetNet Architecture [RFC8655] ties the app-flow identification which is an application-layer concept with the network path identification that depends on the networking technology by "exporting of flow identification", e.g., to a MPLS label.
With RAW, this exporting operation is injective but not bijective. E.g., a flow is fully placed within one RAW Track, but not all packets along that Track are necessarily part of the same flow. For instance, out-of-band OAM packets must circulate in the exact same fashion as the flows that they observe. It results that the network layer identification of an application layer flow (typically their 5- or 6-tuple) must be separate from the path identification that is used to forward a packet.

Section 3.4 of the DetNet data-plane framework [DetNet-DP] indicates that for a DetNet IP Data Plane, a flow is identified by an IPv6 6-tuple. With RAW, that 6-tuple is not what indicates the Track, in other words, the flow ID is not the Track ID.

For instance, the 6TiSCH Architecture [6TiSCH-ARCHI] uses a combination of the address of the Egress End System and an instance identifier in a Hop-by-hop option to indicate a Track. This way, if a packet "escapes" the Track, it will reach the Track Egress point through normal routing and be treated at the service layer through, say, elimination and reordering.

The RAW service includes forwarding over a subset of the Links that form the Track (a subTrack). Packets from the same or a different flow that are routed through the same Track will not necessarily traverse the same Links. The PSE selects a subTrack for a packet based on the links that are preferred and those that should be avoided at this time.

Each packet is forwarded within the subTrack that provides the best adequation with the SLA of the flow and the energy and bandwidth constraints of the network.
With 6TiSCH, packets are tagged with the same (source address, instance ID) will experience the same RAW service regardless of the IPv6 6-tuple that indicates the flow. The forwarding does not depend on whether the packets transport application flows or OAM. In the generic case, the Track or the subTrack can be signaled in the packet through other means, e.g., encoded in the suffix of the destination address as a Segment Routing Service Instruction [SR-ARCHI], or leveraging Bit Index Explicit Replication [BIER] Traffic Engineering [BIER-TE].
8. Source-Routed vs. Distributed Forwarding Decision

Within a large routed topology, the route-over mesh operation builds a particular complex Track with one source and one or more destinations; within the Track, packets may follow different paths and may be subject to RAW forwarding operations that include replication, elimination, retries, overhearing and reordering.

The RAW forwarding decisions include the selection of points of replication and elimination, how many retries can take place, and a limit of validity for the packet beyond which the packet should be destroyed rather than forwarded uselessly further down the Track.

The decision to apply the RAW techniques must be done quickly, and depends on a very recent and precise knowledge of the forwarding conditions within the complex Track. There is a need for an observation method to provide the RAW Data Plane with the specific knowledge of the state of the Track for the type of flow of interest (e.g., for a QoS level of interest). To observe the whole Track in quasi real time, RAW considers existing tools such as L2-triggers, DLEP, BFD and leverages in-band and out-of-band OAM to capture and report that information to the PSE.

One possible way of making the RAW forwarding decisions within a Track is to position a unique PSE at the Ingress and express its decision in-band in the packet, which requires the explicit signaling of the subTrack within the Track. In that case, the RAW forwarding operation along the Track is encoded by the source, e.g., by indicating the subTrack in the Segment Routing (SRv6) Service Instruction, or by leveraging BIER-TE such as done with [BIER-PREF].

The alternate way is to operate the PSE in each forwarding Node, which makes the RAW forwarding decisions for a packet on its own, based on its knowledge of the expectation (timeliness and reliability) for that packet and a recent observation of the rest of the way across the possible paths based on OAM. Information about the desired service should be placed in the packet and matched with the forwarding Node's capabilities and policies.

In either case, a per-track/subTrack state is installed in all the intermediate Nodes to recognize the packets that are following a Track and determine the forwarding operation to be applied.
9. Encapsulation and Decapsulation

In the generic case where the Track Ingress Node is not the source of the Packet, the Ingress Node needs to encapsulate IP-in-IP to ensure that the Destination IP Address is that of the Egress Node and that the necessary Headers (Routing Header, Segment Routing Header and/or Hop-By-Hop Header) can be added to the packet to signal the Track or the subTrack, conforming [IPv6] that discourages the insertion of a Header on the fly.

In the specific case where the Ingress Node is the source of the packet, the encapsulation can be avoided, provided that the source adds the necessary headers and that the destination is set to the Egress Node. Forwarding to a final destination beyond the Egress Node is possible, e.g., with a Segment Routing Header that signals the rest of the way. In that case a Hop-by-Hop Header is not recommended since its validity is within the Track only.

10. Operations Administration and Maintenance

10.1. DetNet OAM

[detnet] provides an OAM framework with [DetNet-OAM] that applies within the DetNet dataplane described in [DetNet-DP], which is typically based on MPLS or IPv6 pseudowires. How the framework applies to IPv6 is detailed in [DetNet-IP-OAM]. Within that framework, OAM messages follow the same forward path as the data packets and gather information about their individual treatment at each hop. When the destination receives an OAM message, it gets a view on the full path or at least of a segment of the path from the source of the flow.

In-situ OAM (IOAM) adds telemetry information about the experience of one packet within the packet itself [I-D.ietf-ippm-ioam-data], with the caveats that the measurement and the consecutive update of the packet interfere with the operation being observed, e.g., may increase the latency of the packet for which it is measured and into which it is stamped.

Note: IOAM and analogous on-path telemetry methods are capable of facilitating collection of useful telemetry information that characterizes the state of a system as experienced by the packet. But because of statistical character of a packet network, these methods may not be used to monitor the continuity of a path (Track) or proper connectivity of the Track (no leaking packets across Tracks).
This effect can be alleviated by measuring on the fly but reporting later, e.g., by exporting the data as a separate management packet [I-D.ietf-ippm-ioam-direct-export]. [I-D.mirsky-ippm-hybrid-two-step] proposes a hybrid two-steps method (HTS) where a trigger message starts the measurement and a follow up along the Track packet gathers the measured data.

"Error Performance Measurement" [I-D.mirsky-ippm-epm] uses Fault Management (FM) and Performance Management (PM) OAM mechanisms to determine availability/unavailability of a path according to predefined SLA.

10.2. RAW Extensions

Classical OAM typically measures information at the transmitter, e.g., residence time in the node or transmit queue size. With RAW, there is a need to combine information at the sender (number of retries) with that at the receiver (LQI, RSSI). This doubles the operating cost of an IAOM processing that would gather the experience of a single packet.

The RAW PSE may be centralized at the Track Ingress, or distributed along the Track. Either way, the PSE needs instant information about the rest of the way to the destination over the possible next-hop adjacencies along the Track in order to decide how to perform simple forwarding, load balancing, and/or replication, as well as determining how much latency credit is available for ARQ.

To provide that information timely, it makes sense that the OAM packets that gather instantaneous values from the radio senders and receivers at each hop flow on the reverse path and inform the PSE at the source and/or the PAREO relays about the state of the rest of the way. This is achieved using Reverse OAM packets that flow along the Reversed Track, West to East.

Because the quality of transmission over a wireless medium varies continuously, it is important that RAW OAM captures the state of the medium across an adjacency over multiple transmission and over a recent period of time, whether the transmitted packets belong to this flow or another. Some of the measured information relates to the medium itself. In other words, the captured information does not only relate to the experience of one packet as is the case for IOAM, but also to the medium itself. This makes an approach like HTS more suitable as it can trigger the capture of multiple measurements over a short period of time. On the other hand, the PSE needs a continuous measurement stream where a single trigger is followed by a periodic follow up capture.
In other words, the best suited OAM method to enable the PSE make accurate PAREO forwarding decisions is a periodic variation of the two-steps method flowing along the reverse Track, as an upstream OAM technique. [RAW-OAM] provides more information on the RAW OAM problem and solution approaches.

10.3. Observed Metrics

The Dynamic Link Exchange Protocol (DLEP) [DLEP] from [MANET] can be leveraged at each hop to derive generic radio metrics (e.g., based on LQI, RSSI, queueing delays and ETX) on individual hops.

Those lower-layer metrics are aggregated along a multihop segment into abstract layer 3 information that reflect the instant reliability and latency of the observed path.

11. Security Considerations

RAW uses all forms of diversity including radio technology and physical path to increase the reliability and availability in the face of unpredictable conditions. While this is not done specifically to defeat an attacker, the amount of diversity used in RAW makes an attack harder to achieve.

11.1. Forced Access

RAW will typically select the cheapest collection of links that matches the requested SLA, for instance, leverage free WI-FI vs. paid 3GPP access. By defeating the cheap connectivity (e.g., PHY-layer interference) the attacker can force an End System to use the paid access and increase the cost of the transmission for the user.

12. IANA Considerations

This document has no IANA actions.

13. Acknowledgments

The editor wishes to thank:

Xavi Vilajosana: Wireless Networks Research Lab, Universitat Oberta de Catalunya

Remous-Aris Koutsiamanis: IMT Atlantique

Nicolas Montavont: IMT Atlantique

Georgios Z. Papadopoulos: IMT Atlantique
14. References

14.1. Normative References

14.2. Informative References

[I-D.mirsky-ippm-epm]

[I-D.mirsky-bfd-mpls-demand]

[I-D.ietf-ippm-ioam-data]

Authors’ Addresses

Pascal Thubert (editor)
Cisco Systems, Inc
Building D
Abstract

This document gives an overview of the architecture of the L-band Digital Aeronautical Communications System (LDACS), which provides a secure, scalable and spectrum efficient terrestrial data link for civil aviation. LDACS is a scheduled, reliable multi-application cellular broadband system with support for IPv6. It is part of a larger shift of flight guidance communication moving to IP-based communication. High reliability and availability of IP connectivity over LDACS, as well as security, are therefore essential. The intent of this document is to introduce LDACS to the IETF community, raise awareness on related activities inside and outside of the IETF, and to seek expertise in shaping the shift of aeronautics to IP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
Table of Contents

1. Introduction .. 3
2. Acronyms .. 5
3. Motivation and Use Cases 7
 3.1. Voice Communications Today 7
 3.2. Data Communications Today 8
4. Provenance and Documents 8
5. Applicability .. 9
 5.1. Advances Beyond the State-of-the-Art 10
 5.1.1. Priorities 10
 5.1.2. Security ... 10
 5.1.3. High Data Rates 10
 5.2. Application ... 10
 5.2.1. Air/Ground Multilink 11
 5.2.2. Air/Air Extension for LDACS 11
 5.2.3. Flight Guidance 12
 5.2.4. Business Communications of Airlines 12
 5.2.5. LDACS-based Navigation 13
6. Requirements .. 13
7. Characteristics ... 15
 7.1. LDACS Access Network 15
 7.2. Topology .. 16
 7.3. LDACS Protocol Stack 16
 7.3.1. LDACS Physical Layer 18
 7.3.2. LDACS Data Link Layer 18
 7.3.3. LDACS Sub-Network Layer and Protocol Services 20
 7.4. LDACS Mobility 20
 7.5. LDACS Management - Interfaces and Protocols 21
8. Reliability and Availability 21
 8.1. Below Layer 1 ... 21
 8.2. Layer 1 and 2 ... 21
 8.3. Beyond Layer 2 ... 24
9. Security .. 25
 Communications 25
 9.2. Security in Depth 26
 9.3. LDACS Security Requirements 26
 9.4. LDACS Security Objectives 27
1. Introduction

One of the main pillars of the modern Air Traffic Management (ATM) system is the existence of a communications infrastructure that enables efficient aircraft control and safe aircraft separation in all phases of flight. Current systems are technically mature but suffering from the Very High Frequency (VHF) band's increasing saturation in high-density areas and the limitations posed by analogue radio communications. Therefore, aviation strives for a sustainable modernization of the aeronautical communications infrastructure on the basis of IP.

This modernization is realized in two steps: (1) the transition of communications datalinks from analogue to digital technologies and, (2) the introduction of IPv6 based networking protocols [RFC8200] in aeronautical networks [ICAO2015].

Step (1) is realized via ATM communications transitioning from analogue VHF voice [KAMA2010] to more spectrum efficient digital data communication. For terrestrial communications the International Civil Aviation Organization (ICAO)'s Global Air Navigation Plan (GANP) foresees this transition to be realized by the development of the L-band Digital Aeronautical Communications System (LDACS). Since Central Europe has been identified as the area of the world that suffers the most from increased saturation of the VHF band, the initial roll-out of LDACS will likely start there, and continue to other increasingly saturated zones as the East and West Coast of the US and parts of Asia [ICAO2018].

Technically LDACS enables IPv6 based air-ground communication related to aviation safety and regularity of flight [ICAO2015]. Passenger communication
and similar services are not supported, since only communications related to "safety and regularity of flight" are permitted in protected aviation frequency bands. The particular challenge is that no additional frequencies can be made available for terrestrial aeronautical communication. It was thus necessary to develop co-existence mechanism/procedures to enable the interference free operation of LDACS in parallel with other aeronautical services/systems in the protected frequency band. Since LDACS will be used for aircraft guidance, high reliability and availability for IP connectivity over LDACS are essential.

LDACS is standardized in ICAO and European Organization for Civil Aviation Equipment (EUROCAE).

This document provides a description by matter specialists on the subject to inform the IETF community about the current transition of the aviation industry from analogue to digital flight guidance, to put LDACS in context of related activities at IETF [I-D.haindl-lisp-gb-atn], and to seek expertise on reliably using IPv6 over LDACS for step (1). This document does not intend to standardize LDACS in the scope of IETF.

Step (2) is a strategy for the worldwide roll-out of IPv6 capable digital aeronautical inter-networking. This is called the Aeronautical Telecommunications Network (ATN)/Internet Protocol Suite (IPS) (hence, ATN/IPS). It is specified in the International Civil Aviation Organization (ICAO) document Doc 9896 [ICAO2015], the Radio Technical Commission for Aeronautics (RTCA) document DO-379 [RTCA2019], the EUROCAE document ED-262 [EURO2019], and the Aeronautical Radio Incorporated (ARINC) document P858 [ARI2021]. LDACS is subject to these regulations since it provides an "access network" - link-layer datalink - to the ATN/IPS.

ICAO has chosen IPv6 as basis for the ATN/IPS mostly for historical reasons, since a previous architecture based on ISO/OSI protocols, the ATN/OSI, failed in the marketplace.

In the context of safety-related communications, LDACS will play a major role in future ATM. ATN/IPS datalinks will provide diversified terrestrial and space-based connectivity in a multilink concept, called the Future Communications Infrastructure (FCI) [VIR2021]. From a technical point of view the FCI will realize airborne multi-homed IPv6 networks connected to a global ground network via at least two independent communication technologies. This is considered in more detail in related IETF work in progress [I-D.haindl-lisp-gb-atn] [I-D.ietf-rtgwg-atn-bgp]. As such, ICAO has actively sought out the support of IETF to define a mobility solution for step (2), which is currently the Locator/ID Separation Protocol (LISP).
In the context of the Reliable and Available Wireless (RAW) working group, developing options, such as intelligent switching between datalinks, for reliably delivering content from and to endpoints, is foreseen. As LDACS is part of such a concept, the work of RAW is immediately applicable. In general, with the aeronautical communications system transitioning to ATN/IPS, and data being transported via IPv6, closer cooperation and collaboration between the aeronautical and IETF community is desirable.

LDACS standardization within the framework of ICAO started in December 2016. The ICAO standardization group has produced the final Standards and Recommended Practices (SARPS) document as of 2022 [ICAO2022]. It defines the general characteristics of LDACS. The ICAO standardization group plans to produce an ICAO technical manual - the ICAO equivalent to a technical standard - within 2022. As such LDACS standardization is not actually finished, and therefore this document is a snapshot of current status. The physical characteristics of an LDACS installation (form, fit, and function) will be standardized by EUROCAE. Generally, the group is open to input from all sources and encourages cooperation between the aeronautical and the IETF community.

2. Acronyms

The following terms are used in the context of RAW in this document:

A/A Air/Air
A/G Air/Ground
A2G Air-to-Ground
ACARS Aircraft Communications Addressing and Reporting System
ADS-B Automatic Dependent Surveillance - Broadcast
ADS-C Automatic Dependent Surveillance - Contract
AeroMACS Aeronautical Mobile Airport Communications System
ANSP Air Traffic Network Service Provider
AOC Aeronautical Operational Control
AR Access Router
ARINC Aeronautical Radio, Incorporated
ARQ Automatic Repeat reQuest
AS Aircraft Station
ATC Air Traffic Control
ATM Air Traffic Management
ATN Aeronautical Telecommunication Network
ATS Air Traffic Service
BCCH Broadcast Channel
CCCH Common Control Channel
CM Context Management
CNS Communication Navigation Surveillance
COTS Commercial Off-The-Shelf
CPDLC Controller Pilot Data Link Communications
CRL Certificate Revocation List
CSP Communications Service Provider
DCCH Dedicated Control Channel
DCH Data Channel
DiffServ Differentiated Services
DLL Data Link Layer
DLS Data Link Service
DME Distance Measuring Equipment
DSB-AM Double Side-Band Amplitude Modulation
DTLS Datagram Transport Layer Security
EUROCAE European Organization for Civil Aviation Equipment
FAA Federal Aviation Administration
FCI Future Communications Infrastructure
FDD Frequency Division Duplex
FL Forward Link
GANP Global Air Navigation Plan
GBAS Ground Based Augmentation System
GNSS Global Navigation Satellite System
GS Ground-Station
G2A Ground-to-Air
HF High Frequency
ICAO International Civil Aviation Organization
IP Internet Protocol
IPS Internet Protocol Suite
kbit/s kilobit per second
LDACS L-band Digital Aeronautical Communications System
LISP Locator/ID Separation Protocol
LLC Logical Link Control
LME LDACS Management Entity
MAC Medium Access Control
MF Multi Frame
NETCONF NETCONF Network Configuration Protocol
OFDM Orthogonal Frequency-Division Multiplexing
OFDMA Orthogonal Frequency-Division Multiplexing Access
OSI Open Systems Interconnection
PHY Physical Layer
QPSK Quadrature Phase-Shift Keying
RACH Random Access Channel
RL Reverse Link
RTCA Radio Technical Commission for Aeronautics
SARPS Standards and Recommended Practices
SDR Software Defined Radio
SESAR Single European Sky ATM Research
SF Super-Frame
SNMP Simple Network Management Protocol
SNP Sub-Network Protocol
VDLm2 VHF Data Link mode 2
3. Motivation and Use Cases

Aircraft are currently connected to Air Traffic Control (ATC) and Aeronautical Operational Control (AOC) services via voice and data communications systems through all phases of flight. ATC refers to communication for flight guidance. AOC is a generic term referring to the business communication of airlines. It refers to the mostly proprietary exchange of data between the aircraft of the airline and the airline’s operation centers and service partners. The ARINC document 633 was developed and first released in 2007 [ARI2019] with the goal to standardize these messages for interoperability, e.g., messages between the airline and fueling or de-icing companies. Within the airport terminal, connectivity is focused on high bandwidth communications, while during en-route, high reliability, robustness, and range is the main focus. Voice communications may use the same or different equipment as data communications systems. In the following, the main differences between voice and data communications capabilities are summarized. The assumed use cases for LDACS complements the list of use cases stated in [RAW-USE-CASES] and the list of reliable and available wireless technologies presented in [RAW-TECHNOS].

3.1. Voice Communications Today

Voice links are used for Air/Ground (A/G) and Air/Air (A/A) communications. The communications equipment can be installed on ground or in the aircraft, in which cases the High Frequency (HF) or VHF frequency band is used. For remote domains voice communications can also be satellite-based. All VHF and HF voice communications are operated via open broadcast channels without authentication, encryption or other protective measures. The use of well-proven communications procedures via broadcast channels, such as phraseology or read-backs, requiring well-trained personnel, help to enhance the safety of communications, but does not replace necessary cryptographical security mechanisms. The main voice communications media is still the analogue VHF Double Side-Band Amplitude Modulation (DSB-AM) communications technique, supplemented by HF single side-band amplitude modulation and satellite communications for remote and oceanic regions. DSB-AM has been in use since 1948, works reliably and safely, and uses low-cost communication equipment. These are the main reasons why VHF DSB-AM communications are still in use, and it is likely that this technology will remain in service for many more years. This however, results in current operational limitations and impediments in deploying new ATM applications, such as flight-centric
operation with point-to-point communications between pilots and air traffic control officers. [BOE2019]

3.2. Data Communications Today

Like for voice, data communications into the cockpit, are currently provided by ground-based equipment operating either on HF or VHF radio bands or by legacy satellite systems. All these communication systems are using narrowband radio channels with a data throughput capacity in the order of kbit/s. While the aircraft is on the ground, some additional communications systems are available, like the Aeronautical Mobile Airport Communications System (AeroMACS) or public cellular networks, operating in the Airport (APT) domain and able to deliver broadband communications capability. [BOE2019]

For regulatory reasons, the data communications networks, used for the transmission of data relating to the safety and regularity of flight, must be strictly isolated from those providing entertainment services to passengers. This leads to a situation that the flight crews are supported by narrowband services during flight while passengers have access to inflight broadband services. The current HF and VHF data links cannot provide broadband services now or in the future, due to the lack of available spectrum. This technical shortcoming is becoming a limitation to enhanced ATM operations, such as trajectory-based operations and 4D trajectory negotiations. [BOE2019]

Satellite-based communications are currently under investigation and enhanced capabilities are under development which will be able to provide inflight broadband services and communications supporting the safety and regularity of flight. In parallel the ground-based broadband data link technology LDACS is being standardized by ICAO and has recently shown its maturity during flight tests [MAE2021] [BEL2021]. The LDACS technology is scalable, secure and spectrum efficient and provides significant advantages to the users and service providers. It is expected that both - satellite systems and LDACS - will be deployed to support the future aeronautical communication needs as envisaged by the ICAO Global Air Navigation Plan (GNAP). [BOE2019]

4. Provenance and Documents

The development of LDACS has already made substantial progress in the Single European Sky ATM Research (SESAR) framework and is currently being continued in the follow-up program SESAR2020 [RIH2018]. A key objective of these activities is to develop, implement and validate a modern aeronautical data link able to evolve with aviation needs over long-term. To this end, an LDACS specification has been produced.
and is continuously updated; transmitter demonstrators were developed to test the spectrum compatibility of LDACS with legacy systems operating in the L-band [SAJ2014]; and the overall system performance was analyzed by computer simulations, indicating that LDACS can fulfill the identified requirements [GRA2011].

Up to now LDACS standardization has been focused on the development of the physical layer and the data link layer. Only recently have higher layers have come into the focus of the LDACS development activities. Currently no "IPv6 over LDACS" specification is defined; however, SESAR2020 has started experimenting with IPv6-based LDACS testbeds and ICAO plans to seek guidance from IETF to develop IPv6 over LDACS. As of May 2022, LDACS defines 1536 Byte user-data packets [GRA2020] in which IPv6 traffic shall be encapsulated. Additionally, Robust Header Compression (ROHC) is considered on LDACS Sub-Network Protocol (SNP) layer (cf. Section 7.3.3.) [RFC5795].

The IPv6 architecture for the aeronautical telecommunication network is called the ATN/IPS. Link-layer technologies within the ATN/IPS encompass LDACS [GRA2020], AeroMACS [KAMA2018] and several SatCOM candidates and combined with the ATN/IPS, are called the FCI. The FCI will support quality of service, link diversity, and mobility under the umbrella of the "multilink concept". The "multilink concept" describing the idea that depending on link quality, communication can be switched seamlessly from one datalink technology to another. This work is led by ICAO Communication Panel working group WG-I.

In addition to standardization activities several industrial LDACS prototypes have been built. One set of LDACS prototypes has been evaluated in flight trials confirming the theoretical results predicting the system performance [GRA2018] [MAE2021] [BEL2021].

5. Applicability

LDACS is a multi-application cellular broadband system capable of simultaneously providing various kinds of Air Traffic Services (ATS) including ATS-B3, and AOC communications services from deployed Ground-Stations (GS). The physical layer and data link layer of LDACS are optimized for controller-pilot data link communications, but the system also supports digital air-ground voice communications.

LDACS supports communications in all airspaces (airport, terminal maneuvering area, and en-route), and on the airport surface. The physical LDACS cell coverage is effectively de-coupled from the operational coverage required for a particular service. This is new in aeronautical communications. Services requiring wide-area coverage can be installed at several adjacent LDACS cells. The
handover between the involved LDACS cells is seamless, automatic, and transparent to the user. Therefore, the LDACS communications concept enables the aeronautical communication infrastructure to support future dynamic airspace management concepts.

5.1. Advances Beyond the State-of-the-Art

LDACS offers several capabilities, not yet provided in contemporarily deployed aeronautical communications systems.

5.1.1. Priorities

LDACS is able to manage service priorities, an important feature not available in some of the current data link deployments. Thus, LDACS guarantees bandwidth availability, low latency, and high continuity of service for safety critical ATS applications while simultaneously accommodating less safety-critical AOC services.

5.1.2. Security

LDACS is a secure data link with built-in security mechanisms. It enables secure data communications for ATS and AOC services, including secured private communications for aircraft operators and Air traffic Network Service Providers (ANSP). This includes concepts for key and trust management, mutual authentication and key establishment protocols, key derivation measures, user and control message-in-transit protection, secure logging and availability and robustness measures [MAE20182] [MAE2021].

5.1.3. High Data Rates

The user data rate of LDACS is 315 kbit/s to 1428 kbit/s on the Forward Link (FL) for the Ground-to-Air (G2A) connection, and 294 kbit/s to 1390 kbit/s on the Reverse Link (RL) for the Air-to-Ground (A2G) connection, depending on coding and modulation. This is up to two orders of magnitude greater than current terrestrial digital aeronautical communications systems, such as the VHF Data Link mode 2 (VDLm2), provide [ICAO2019] [GRA2020].

5.2. Application

LDACS will be used by several aeronautical applications ranging from enhanced communications protocol stacks (multi-homed mobile IPv6 networks in the aircraft and potentially ad-hoc networks between aircraft) to broadcast communication applications (GNSS correction data) and integration with other service domains (using the communications signal for navigation) [MAE20211]. Also, a digital voice service offering better quality and service than current HF and
VHF systems is foreseen.

5.2.1. Air/Ground Multilink

It is expected that LDACS, together with upgraded satellite-based communications systems, will be deployed within the FCI and constitute one of the main components of the multilink concept within the FCI.

Both technologies, LDACS and satellite systems, have their specific benefits and technical capabilities which complement each other. Especially, satellite systems are well-suited for large coverage areas with less dense air traffic, e.g. oceanic regions. LDACS is well-suited for dense air traffic areas, e.g., continental areas or hot-spots around airports and terminal airspace. In addition, both technologies offer comparable data link capacity and, thus, are well-suited for redundancy, mutual back-up, or load balancing.

Technically the FCI multilink concept will be realized by multi-homed mobile IPv6 networks in the aircraft. The related protocol stack is currently under development by ICAO, within SESAR, and the IETF. Currently two layers of mobility are foreseen. Local mobility within the LDACS access network is realized through PMIPv6, global mobility between "multi-link" access networks (which need not be LDACS) is implemented on top of LISP [I-D.haindl-lisp-gb-atn] [I-D.ietf-lisp-rfc6830bis] [I-D.ietf-lisp-rfc6833bis].

5.2.2. Air/Air Extension for LDACS

A potential extension of the multilink concept is its extension to the integration of ad-hoc networks between aircraft.

Direct A/A communication between aircraft in terms of ad-hoc data networks are currently considered a research topic since there is no immediate operational need for it, although several possible use cases are discussed (Automatic Dependent Surveillance - Broadcast (ADS-B), digital voice, wake vortex warnings, and trajectory negotiation) [BEL2019]. It should also be noted, that currently deployed analog VHF voice radios support direct voice communication between aircraft, making a similar use case for digital voice plausible.

LDACS A/A is currently not part of the standardization process and will not be covered within this document. However, it is planned that LDACS A/A will be rolled out after the initial deployment of LDACS A/G, then being seamlessly integrated in the existing LDACS ground-based system.
5.2.3. Flight Guidance

The FCI (and therefore LDACS) is used to provide flight guidance. This is realized using three applications:

1. Context Management (CM): The CM application manages the automatic logical connection to the ATC center currently responsible to guide the aircraft. Currently, this is done by the air crew manually changing VHF voice frequencies manually according to the progress of the flight. The CM application automatically sets up equivalent sessions.

2. Controller Pilot Data Link Communications (CPDLC): The CPDLC application provides the air crew with the ability to exchange data messages similar to text messages with the currently responsible ATC center. The CPDLC application takes over most of the communication currently performed over VHF voice and enables new services that do not lend themselves to voice communication (i.e., trajectory negotiation).

3. Automatic Dependent Surveillance - Contract (ADS-C): ADS-C reports the position of the aircraft to the currently active ATC center. Reporting is bound to "contracts", i.e., pre-defined events related to the progress of the flight (i.e., the trajectory). ADS-C and CPDLC are the primary applications used for implementing in-flight trajectory management.

CM, CPDLC, and ADS-C are available on legacy datalinks, but are not widely deployed and with limited functionality.

Further ATC applications may be ported to use the FCI or LDACS as well. A notable application is GBAS for secure, automated landings: The Global Navigation Satellite System (GNSS) based GBAS is used to improve the accuracy of GNSS to allow GNSS based instrument landings. This is realized by sending GNSS correction data (e.g., compensating ionospheric errors in the GNSS signal) to the aircraft's GNSS receiver via a separate data link. Currently, the VDB data link is used. VDB is a narrowband single-purpose datalink without advanced security only used to transmit GBAS correction data. This makes VDB a natural candidate for replacement by LDACS [MAE20211].

5.2.4. Business Communications of Airlines

In addition to air traffic services, AOC services are transmitted over LDACS. AOC is a generic term referring to the business communication of airlines, between the airlines and service partners on the ground and their own aircraft in the air. Regulatory-wise, this is considered related to safety and regularity of flight and may therefore, be transmitted over LDACS. AOC communication is considered the main business case for LDACS communications service...
providers since modern aircraft generate significant amounts of data (e.g., engine maintenance data).

5.2.5. LDACS-based Navigation

Beyond communications, radio signals can always also be used for navigation. This fact is used for the LDACS navigation concept.

For future aeronautical navigation, ICAO recommends the further development of GNSS based technologies as primary means for navigation. Due to the large separation between navigational satellites and aircraft, the power of the GNSS signals received by the aircraft is, however, very low. As a result, GNSS disruptions might occasionally occur due to unintentional interference, or intentional jamming. Yet the navigation services must be available with sufficient performance for all phases of flight. Therefore, during GNSS outages, or blockages, an alternative solution is needed. This is commonly referred to as Alternative Positioning, Navigation, and Timing (APNT).

One such APNT solution is based on exploiting the built-in navigation capabilities of LDACS operation. That is, the normal operation of LDACS for ATC and AOC communications would also directly enable the aircraft to navigate and obtain a reliable timing reference from the LDACS GSs. Current cell planning for Europe shows 84 LDACS cells to be sufficient [MOST2018] to cover the continent at sufficient service level. If more than three Ground Stations (GS) are visible by the aircraft, via knowing the exact positions of these and having a good channel estimation (which LDACS does due to numerous works mapping the L-band channel characteristics [SCHN2018]) it is possible to calculate the position of the aircraft via measuring signal propagation times to each GS. In flight trials in 2019 with one aircraft (and airborne radio inside it) and just four GS, navigation feasibility was demonstrated within the footprint of all four GS with a 95th percentile position-domain error of 171.1m [OSE2019] [BEL2021] [MAE20211]. As such LDACS can be used independent of GNSS as navigation alternative with way smaller position-domain errors with more deployed GS [OSE2019] [BEL2021] [MAE20211].

LDACS navigation has already been demonstrated in practice in two flight measurement campaigns [SHU2013] [BEL2021] [MAE20211].

6. Requirements

The requirements for LDACS are mostly defined by its application area: Communications related to safety and regularity of flight.
A particularity of the current aeronautical communication landscape is that it is heavily regulated. Aeronautical data links (for applications related to safety and regularity of flight) may only use spectrum licensed to aviation and data links endorsed by ICAO. Nation states can change this locally, however, due to the global scale of the air transportation system, adherence to these practices is to be expected.

Aeronautical data links for the ATN are therefore expected to remain in service for decades. The VDLm2 data link currently used for digital terrestrial internetworking was developed in the 1990ies (the use of the Open Systems Interconnection (OSI) stack indicates that as well). VDLm2 is expected to be used at least for several decades. In this respect aeronautical communications (for applications related to safety and regularity of flight) is more comparable to industrial applications than to the open Internet.

Internetwork technology is already installed in current aircraft. Current ATS applications use either Aircraft Communications Addressing and Reporting System (ACARS) or the OSI stack. The objective of the development effort of LDACS, as part of the FCI, is to replace legacy OSI stack and proprietary ACARS internetwork technologies with industry standard IP technology. It is anticipated that the use of Commercial Off-The-Shelf (COTS) IP technology mostly applies to the ground network. The avionics networks on the aircraft will likely be heavily modified versions of Ethernet or proprietary.

AOC applications currently mostly use the same stack (although some applications, like the graphical weather service may use the commercial passenger network). This creates capacity problems (resulting in excessive amounts of timeouts) since the underlying terrestrial data links do not provide sufficient bandwidth (i.e., with VDLm2 currently in the order of 10 kbit/s). The use of non-aviation specific data links is considered a security problem. Ideally the aeronautical IP internetwork, hence the ATN over which only communications related to safety and regularity of flight is handled, and the Internet should be completely separated at Layer 3.

The objective of LDACS is to provide a next generation terrestrial data link designed to support IP addressing and provide much higher bandwidth to avoid the currently experienced operational problems.

The requirement for LDACS is therefore to provide a terrestrial high-throughput data link for IP internetworking in the aircraft.
In order to fulfill the above requirement LDACS needs to be interoperable with IP (and IP-based services like Voice-over-IP) at the gateway connecting the LDACS network to other aeronautical ground networks (i.e., the ATN). On the avionics side, in the aircraft, aviation specific solutions are to be expected.

In addition to these functional requirements, LDACS and its IP stack need to fulfill the requirements defined in RTCA DO-350A/EUROCAE ED-228A [DO350A]. This document defines continuity, availability, and integrity requirements at different scopes for each air traffic management application (CPDLC, CM, and ADS-C). The scope most relevant to IP over LDACS is the Communications Service Provider (CSP) scope.

Continuity, availability, and integrity requirements are defined in [DO350A] volume 1 Table 5-14, and Table 6-13. Appendix A presents the required information.

In a similar vein, requirements to fault management are defined in the same tables.

7. Characteristics

LDACS will become one of several wireless access networks connecting aircraft to the ATN implemented by the FCI.

The current LDACS design is focused on the specification of layer one and two. However, for the purpose of this work, only layer two details are discussed here.

Achieving the stringent continuity, availability, and integrity requirements defined in [DO350A] will require the specification of layer 3 and above mechanisms (e.g., reliable crossover at the IP layer). Fault management mechanisms are similarly unspecified as of May 2022. While current regulatory documents at ICAO, as well as this document do not specify the above mechanism, a short overview of the current state shall throughout each section.

7.1. LDACS Access Network

An LDACS access network contains an Access Router (AR) and several GS, each of them providing one LDACS radio cell.

User plane interconnection to the ATN is facilitated by the AR peering with an A/G Router connected to the ATN.

The internal control plane of an LDACS access network interconnects the GSs. An LDACS access network is illustrated in Figure 1.
7.2. Topology

LDACS is a cellular point-to-multipoint system. It assumes a star-topology in each cell where Aircraft Stations (AS) belonging to aircraft within a certain volume of space (the LDACS cell) are connected to the controlling GS. The LDACS GS is a centralized instance that controls LDACS A/G communications within its cell. The LDACS GS can simultaneously support multiple bidirectional communications to the ASs under its control. LDACS’s GSs themselves are connected to each other and the AR.

Prior to utilizing the system an aircraft has to register with the controlling GS to establish dedicated logical channels for user and control data. Control channels have statically allocated resources, while user channels have dynamically assigned resources according to the current demand. Logical channels exist only between the GS and the AS.

7.3. LDACS Protocol Stack

The protocol stack of LDACS is implemented in the AS and GS: It consists of the Physical Layer (PHY) with five major, functional blocks above it. Four are placed in the Data Link Layer (DLL) of the AS and GS: (1) Medium Access Control (MAC) Layer, (2) Voice Interface (VI), (3) Data Link Service (DLS), and (4) LDACS Management Entity (LME). The fifth entity resides within the sub-network layer: (5) the Sub-Network Protocol (SNP). The LDACS radio is externally connected to a voice unit, radio control unit, and via the AC-R to the ATN network.
LDACS is considered an ATN/IPS radio access technology, from the view of ICAO's regulatory framework. Hence, the interface between ATN and LDACS must be IPv6 based, as regulatory documents, such as ICAO Doc 9896 [ICAO2015] and DO-379 [RTCA2019] clearly foresee that. The translation between IPv6 layer and SNP layer is currently subject of ongoing standardization efforts and at the time of writing not finished yet.

Figure 2 shows the protocol stack of LDACS as implemented in the AS and GS. Acronyms used here are introduced throughout the upcoming sections.
7.3.1. LDACS Physical Layer

The physical layer provides the means to transfer data over the radio channel. The LDACS GS supports bidirectional links to multiple aircraft under its control. The FL direction at the G2A connection and the RL direction at the A2G connection are separated by Frequency Division Duplex (FDD). FL and RL use a 500 kHz channel each. The GS transmits a continuous stream of Orthogonal Frequency-Division Multiplexing Access (OFDM) symbols on the FL. In the RL different aircraft are separated in time and frequency using Orthogonal Frequency-Division Multiple Access (OFDMA). Aircraft thus transmit discontinuously on the RL via short radio bursts sent in precisely defined transmission opportunities allocated by the GS.

7.3.2. LDACS Data Link Layer

The data-link layer provides the necessary protocols to facilitate concurrent and reliable data transfer for multiple users. The LDACS data link layer is organized in two sub-layers: The medium access sub-layer and the Logical Link Control (LLC) sub-layer. The medium access sub-layer manages the organization of transmission opportunities in slots of time and frequency. The LLC sub-layer provides acknowledged point-to-point logical channels between the aircraft and the GS using an Automatic Repeat reQuest (ARQ) protocol. LDACS supports also unacknowledged point-to-point channels and G2A Broadcast transmission.

7.3.2.1. Medium Access Control (MAC) Services

The MAC time framing service provides the frame structure necessary to realize slot-based time-division multiplex-access on the physical link. It provides the functions for the synchronization of the MAC framing structure and the PHY Layer framing. The MAC time framing provides a dedicated time slot for each logical channel.

The MAC sub-layer offers access to the physical channel to its service users. Channel access is provided through transparent logical channels. The MAC sub-layer maps logical channels onto the appropriate slots and manages the access to these channels. Logical channels are used as interface between the MAC and LLC sub-layers.
7.3.2.2. Data Link Service (DLS) Services

The DLS provides acknowledged and unacknowledged (including broadcast and packet mode voice) bidirectional exchange of user data. If user data is transmitted using the acknowledged DLS, the sending DLS entity will wait for an acknowledgement from the receiver. If no acknowledgement is received within a specified time frame, the sender may automatically try to retransmit its data. However, after a certain number of failed retries, the sender will suspend further retransmission attempts and inform its client of the failure.

The DLS uses the logical channels provided by the MAC:

1. A GS announces its existence and access parameters in the Broadcast Channel (BCCH).
2. The Random Access Channel (RACH) enables AS to request access to an LDACS cell.
3. In the FL the Common Control Channel (CCCH) is used by the GS to grant access to data channel resources.
4. The reverse direction is covered by the RL, where ASs need to request resources before sending. This happens via the Dedicated Control Channel (DCCH).
5. User data itself is communicated in the Data Channel (DCH) on the FL and RL.

Access to the FL and RL data channel is granted by the scheduling mechanism implemented in the LME discussed below.

7.3.2.3. Voice Interface (VI) Services

The VI provides support for virtual voice circuits. Voice circuits may either be set-up permanently by the GS (e.g., to emulate voice party line) or may be created on demand.

7.3.2.4. LDACS Management Entity (LME) Services

The mobility management service in the LME provides support for registration and de-registration (cell entry and cell exit), scanning RF channels of neighboring cells and handover between cells. In addition, it manages the addressing of aircraft within cells.

The resource management service provides link maintenance (power, frequency and time adjustments), support for adaptive coding and modulation, and resource allocation.
The resource management service accepts resource requests from/for different AS and issues resource allocations accordingly. While the scheduling algorithm is not specified and a point of possible vendor differentiation, it is subject to the following requirements:

1. Resource scheduling must provide channel access according to the priority of the request
2. Resource scheduling must support "one-time" requests.
3. Resource scheduling must support "permanent" requests that reserve a resource until the request is canceled e.g. for digital voice circuits.

7.3.3. LDACS Sub-Network Layer and Protocol Services

Lastly, the SNP layer of LDACS directly interacts with IPv6 traffic. Incoming ATN/IPS IPv6 packets are forwarded over LDACS from and to the aircraft. The final IP addressing structure in an LDACS subnet still needs to be defined, however the current layout is considered to consist of the five network segments: Air Core Net, Air Management Net, Ground Core Net, Ground Management Net, Ground Net. Any protocols that the ATN/IPS [ICAO2015] defines as mandatory will reach the aircraft, however listing these here is out of its actual scope. For more information on the technicalities of the above ATN/IPS layer, please refer to [ICAO2015] [RTCA2019] [ARI2021].

The DLS provides functions required for the transfer of user plane data and control plane data over the LDACS access network. The security service provides functions for secure user data communication over the LDACS access network. Note that the SNP security service applies cryptographic measures as configured by the GS.

7.4. LDACS Mobility

LDACS supports layer 2 handovers to different LDACS cells. Handovers may be initiated by the aircraft (break-before-make) or by the GS (make-before-break). Make-before-break handovers are only supported between GSs connected to each other, usually GS operated by the same service provider.

When a handover between AS and two interconnected GS takes place, it can be triggered by AS or GS. Once that is done, new security information is exchanged between AS, GS1 and GS2, before the "old" connection is terminated between AS and GS1 and a "new" connection is set up between AS and GS2. As a last step, accumulated user-data at GS1 is forwarded to GS2 via a ground connection, before that is sent via GS2 to the AS. While some information for handover is transmitted in the LDACS DCH, the information remains in the
"control-plane" part of LDACS and is exchanged between LMEs in AS, GS1 and GS2. As such, local mobility takes place entirely within the LDACS network, utilizing the PMIPv6 protocol [RFC5213]. The use of PMIPv6 is currently not be mandated by standardization, and become vendor-specific.

External handovers between non-connected LDACS access networks or different aeronautical data links are handled by the FCI multi-link concept.

7.5. LDACS Management - Interfaces and Protocols

LDACS management interfaces and protocols are currently not be mandated by standardization. The implementations currently available use SNMP for management and Radius for AAA. Link state (link up, link down) is reported using the ATN/IPS Aircraft Protocol (AIAP) mandated by ICAO WG-I for multi-link.

8. Reliability and Availability

8.1. Below Layer 1

Below Layer 2, aeronautics usually relies on hardware redundancy. To protect availability of the LDACS link, an aircraft equipped with LDACS will have access to two L-band antennae with triple redundant radio systems as required for any safety relevant aeronautical systems by ICAO.

8.2. Layer 1 and 2

LDACS has been designed with applications related to the safety and regularity of flight in mind. It has therefore been designed as a deterministic wireless data link (as far as this is possible).

Based on channel measurements of the L-band channel LDACS was designed from the PHY layer up with robustness in mind. Channel measurements of the L-band channel [SCH2016] confirmed LDACS to be well adapted to its channel.

In order to maximize the capacity per channel and to optimally use the available spectrum, LDACS was designed as an OFDM-based FDD system, supporting simultaneous transmissions in FL in the G2A connection and RL in the A2G connection. The legacy systems already deployed in the L-band limit the bandwidth of both channels to approximately 500 kHz.
The LDACS physical layer design includes propagation guard times sufficient for the operation at a maximum distance of 200 nautical miles from the GS. In actual deployment, LDACS can be configured for any range up to this maximum range.

The LDACS physical layer supports adaptive coding and modulation for user data. Control data is always encoded with the most robust coding and modulation (FL: Quadrature Phase-Shift Keying (QPSK), coding rate 1/2, RL: QPSK, coding rate 1/3).

LDACS medium access layer on top of the physical layer uses a static frame structure to support deterministic timer management. As shown in Figure 3 and Figure 4, LDACS framing structure is based on Super-Frames (SF) of 240ms duration corresponding to 2000 OFDM symbols. OFDM symbol time is 120 microseconds, sampling time 1.6 microseconds and a guard time of 4.8 microseconds. The structure of a SF is depicted in Figure 3 along with its structure and timings of each part. FL and RL boundaries are aligned in time (from the GS perspective) allowing for deterministic slots for control and data channels. This initial AS time synchronization and time synchronization maintenance is based on observing the synchronization symbol pairs that repetitively occur within the FL stream, being sent by the controlling GS [GRA2020]. As already mentioned, LDACS data transmission is split into user-data (DCH) and control (BCCH, CCCH in FL; RACH, DCCH in RL) as depicted with corresponding timings in Figure 4.

```
^ FL  |
| BCCH | MF | MF | MF | MF |
| 6.72ms | 58.32ms | 58.32ms | 58.32ms | 58.32ms |

<table>
<thead>
<tr>
<th>F r e q u e n c y</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
</tr>
<tr>
<td>6.72ms</td>
</tr>
</tbody>
</table>

<----------------- Super-Frame (SF) - 240ms ----------------->
```

Figure 3: SF structure for LDACS
LDACS cell entry is conducted with an initial control message exchange via the RACH and the BCCH.

After cell entry, LDACS medium access is always under the control of the GS of a radio cell. Any medium access for the transmission of user data on a DCH has to be requested with a resource request message stating the requested amount of resources and class of service. The GS performs resource scheduling on the basis of these requests and grants resources with resource allocation messages. Resource request and allocation messages are exchanged over dedicated contention-free control channels (DCCH and CCCH).

The purpose of quality-of-service in LDACS medium access is to provide prioritized medium access at the bottleneck (the wireless link). The requested calls of service is signaled to LDACS through the Signaling of higher layer quality-of-service requests to LDACS is implemented on the basis of Differentiated Services-(DiffServ)classes CS01 (lowest priority) to CS07 (highest priority).

In addition to having full control over resource scheduling, the GS can send forced handover commands for off-loading or channel management, e.g., when the signal quality declines and a more suitable GS is in the AS’s reach. With robust resource management of the capacities of the radio channel, reliability and robustness measures are therefore also anchored in the LME.

In addition to radio resource management, the LDACS control channels are also used to send keep-alive messages, when they are not otherwise used. Since the framing of the control channels is
deterministic, missing keep-alive messages can thus be immediately
detected. This information is made available to the multilink
protocols for fault management.

The protocol used to communicate faults is not defined in the LDACS
specification. It is assumed that vendors would use industry
standard protocols like the Simple Network Management Protocol or the
Network Configuration Protocol, where security permits.

The LDACS data link layer protocol, running on top of the medium
access sub-layer, uses ARQ to provide reliable data transmission on
the data channel.

It employs selective repeat ARQ with transparent fragmentation and
reassembly to the resource allocation size to minimize latency and
overhead without losing reliability. It ensures correct order of
packet delivery without duplicates. In case of transmission errors,
it identifies lost fragments with deterministic timers synced to the
medium access frame structure and initiates retransmission.

8.3. Beyond Layer 2

LDACS availability can be increased by appropriately deploying LDACS
infrastructure: This means proliferating the number of terrestrial
ground stations. However, there are four aspect that need to be
taken into consideration: (1) scarcity of aeronautical spectrum for
data link communication (in the case of LDACS: tens of MHz in the
L-band), (2) an increase in the amount of ground stations also
increases the individual bandwidth for aircraft in the cell, as fewer
aircraft have to share the spectrum, (3) to cover worldwide
terrestrial ATM via LDACS is also a question of cost and the possible
reuse of spectrum which makes it not always possible to decrease cell
sizes and (4) the Distance Measuring Equipment (DME) is the primary
user of the aeronautical L-band, which means any LDACS deployment has
to take DME frequency planning into account.

While aspect (2) provides a good reason, alongside increasing
redundancy, for smaller cells than the maximum range LDACS was
developed for (200 Nautical Miles (NM)), the other three need to be
respected when doing so. There are preliminary works on LDACS cell
planning, such as [MOST2018], where the authors reach the conclusion
that 84 LDACS cells in Europe would be sufficient to serve European
air traffic for the next 20 years.
For redundancy reasons, the aeronautical community has decided not to rely on a single communication system or frequency band. It is envisioned to have multiple independent data link technologies in the aircraft (e.g., terrestrial and satellite communications) in addition to legacy VHF voice.

However, as of now, no reliability and availability mechanisms that could utilize the multilink architecture, have been specified on Layer 3 and above. Even if LDACS has been designed for reliability, the wireless medium presents significant challenges to achieve deterministic properties such as low packet error rate, bounded consecutive losses, and bounded latency. Support for high reliability and availability for IP connectivity over LDACS is certainly highly desirable but needs to be adapted to the specific use case.

9. Security

The goal of this Section is to inform the reader about the state of security in aeronautical communications, state security considerations applicable for all ATN/IPS traffic and to provide an overview of the LDACS link-layer security capabilities.

Aviation will require secure exchanges of data and voice messages for managing the air traffic flow safely through the airspaces all over the world. Historically Communication Navigation Surveillance (CNS) wireless communications technology emerged from military and a threat landscape where inferior technological and financial capabilities of adversaries were assumed [STR2016]. The main communications method for ATC today is still an open analogue voice broadcast within the aeronautical VHF band. Currently, information security is mainly procedural, based by using well-trained personnel and proven communications procedures. This communication method has been in service since 1948. However, since the emergence of civil aeronautical CNS applications in the 70s, and today, the world has changed.

Civil applications have significant lower spectrum available than military applications. This means several military defenses mechanisms, such as frequency hopping or pilot symbol scrambling and, thus, a defense-in-depth approach starting at the physical layer, is infeasible for civil systems. With the rise of cheap Software Defined Radios (SDR), the previously existing financial barrier is almost gone and open source projects such as GNU radio [GNU2021] allow a new type of unsophisticated listeners and possible attackers.
Most CNS technology developed in ICAO relies on open standards, thus syntax and semantics of wireless digital aeronautical communications should be expected to be common knowledge for attackers. With increased digitization and automation of civil aviation, the human as control instance, is being taken gradually out of the loop. Autonomous transport drones or single piloted aircraft demonstrate this trend. However, without profound cybersecurity measures such as authenticity and integrity checks of messages in-transit on the wireless link or mutual entity authentication, this lack of a control instance can prove disastrous. Thus, future digital communications will need additional embedded security features to fulfill modern information security requirements like authentication and integrity. These security features require sufficient bandwidth which is beyond the capabilities of currently deployed VHF narrowband communications systems. For voice and data communications, sufficient data throughput capability is needed to support the security functions while not degrading performance. LDACS is a data link technology with sufficient bandwidth to incorporate security without losing too much user data throughput.

9.2. Security in Depth

ICAO Doc 9896 foresees transport layer security [ICAO2015] for all aeronautical data transmitted via the ATN/IPS, as described in ARINC P858 [ARI2021]. This is realized via Datagram Transport Layer Security (DTLS) 1.3 [RFC9147].

LDACS also needs to comply with in-depth security requirements, stated in ARINC 858, for the radio access technologies transporting ATN/IPS data. These requirements imply that LDACS must provide layer 2 security in addition to any higher layer mechanisms. Specifically, ARINC 858 states that {[datalinks within the FCI need to provide] "a secure channel between the airborne radio systems and the peer radio access endpoints on the ground [...] to ensure authentication and integrity of air-ground message exchanges in support of an overall defense-in-depth security strategy."} [ARI2021]

9.3. LDACS Security Requirements

Overall, cybersecurity for CNS technology shall protect the following business goals [MAE20181]:

1. Safety: The system must sufficiently mitigate attacks, which contribute to safety hazards.
2. Flight regularity: The system must sufficiently mitigate attacks, which contribute to delays, diversions, or cancellations of flights.
3. Protection of business interests: The system must sufficiently
mitigate attacks which result in financial loss, reputation
damage, disclosure of sensitive proprietary information, or
disclosure of personal information.

To further analyze assets and derive threats and thus protection
scenarios several threat-and risk analyses were performed for LDACS
[MAE20181], [MAE20191]. While all LDACS These results allowed
deriving security scope and objectives from the requirements and the
conducted threat-and risk analysis. Please note, IPv6 security
considerations are briefly discussed in Section 9.7 while a summary
of security requirements for link-layer candidates in the ATN/IPS is
given in [ARI2021], which states: "Since the communication radios
connect to local airborne networks in the aircraft control domain,
[...] the airborne radio systems represent the first point of entry
for an external threat to the aircraft. Consequently, a secure
channel between the airborne radio systems and the peer radio access
endpoints on the ground is necessary to ensure authentication and
integrity of air-ground message exchanges in support of an overall
defense-in-depth security strategy".

9.4. LDACS Security Objectives

Security considerations for LDACS are defined by the official SARPS
document by ICAO [ICAO2022]:

1. LDACS shall provide a capability to protect the availability and
 continuity of the system.
2. LDACS shall provide a capability including cryptographic
 mechanisms to protect the integrity of messages in transit.
3. LDACS shall provide a capability to ensure the authenticity of
 messages in transit.
4. LDACS should provide a capability for nonrepudiation of origin
 for messages in transit.
5. LDACS should provide a capability to protect the confidentiality
 of messages in transit.
6. LDACS shall provide an authentication capability.
7. LDACS shall provide a capability to authorize the permitted
 actions of users of the system and to deny actions that are not
 explicitly authorized.
8. If LDACS provides interfaces to multiple domains, LDACS shall
 provide capability to prevent the propagation of intrusions within
 LDACS domains and towards external domains.
Work in 2022 includes a change request for these SARPS aims to limit the "non-repudiation of origin of messages in transit" requirement only to the authentication and key establishment messages at the beginning of every session.

9.5. LDACS Security Functions

These objectives were used to derive several security functions for LDACS required to be integrated in the LDACS cybersecurity architecture: Identification, Authentication, Authorization, Confidentiality, System Integrity, Data Integrity, Robustness, Reliability, Availability, and Key and Trust Management. Several works investigated possible measures to implement these security functions [BIL2017], [MAE20181], [MAE20191].

9.6. LDACS Security Architecture

The requirements lead to a LDACS security model, including different entities for identification, authentication and authorization purposes, ensuring integrity, authenticity and confidentiality of data. A draft of the cybersecurity architecture of LDACS can be found in [ICAO2022] and [MAE20182] and respective updates in [MAE20191], [MAE20192], [MAE2020], [MAE2021].

9.6.1. Entities

A simplified LDACS architectural model requires the following entities: Network operators such as the Societe Internationale de Telecommunications Aeronautiques (SITA) [SIT2020] and ARINC [ARI2020] are providing access to the ground IPS network via an A/G LDACS router. This router is attached to a closed off LDACS access network, which connects via further access routers to the different LDACS cell ranges, each controlled by a GS (serving one LDACS cell), with several interconnected GS spanning a local LDACS access network. Via the A/G wireless LDACS data link as the aircraft is connected to the ground network and via the aircraft’s VI and aircraft’s network interface, aircraft’s data can be sent via the AS back to the GS, then to the LDACS local access network, access routers, LDACS access network, A/G LDACS router and finally to the ground IPS network [ICAO2015].
9.6.2. Entity Identification

LDACS needs specific identities for the AS, the GS, and the network operator. The aircraft itself can be identified using the 24-bit ICAO identifier of an aircraft [ICAO2022], the call sign of that aircraft or the recently founded privacy ICAO address of the Federal Aviation Administration (FAA) program with the same name [FAA2020]. It is conceivable that the LDACS AS will use a combination of aircraft identification, radio component identification and even operator feature identification to create a unique AS LDACS identification tag. Similar to a 4G’s eNodeB serving network identification tag, a GS could be identified using a similar field. The identification of the network operator is again similar to 4G (e.g., E-Plus, AT&T, and TELUS), in the way that the aeronautical network operators are listed (e.g., ARINC [ARI2020] and SITA [SIT2020]).

9.6.3. Entity Authentication and Key Establishment

In order to anchor trust within the system, all LDACS entities connected to the ground IPS network will be rooted in an LDACS specific chain-of-trust and PKI solution, quite similar to AeroMACS’s approach [CRO2016]. These certificates, residing at the entities and incorporated in the LDACS PKI, providing proof the ownership of their respective public key, include information about the identity of the owner and the digital signature of the entity that has verified the certificate’s content. First, all ground infrastructures must mutually authenticate to each other, negotiate and derive keys and, thus, secure all ground connections. How this process is handled in detail is still an ongoing discussion. However, established methods to secure user plane by IPSec [RFC4301] and IKEv2 [RFC7296] or the application layer via TLS 1.3 [RFC8446] are conceivable. The LDACS PKI with their chain-of-trust approach, digital certificates and public entity keys lay the groundwork for this step. In a second step, the AS with the LDACS radio aboard, approaches an LDACS cell and performs a cell-attachment procedure with the corresponding GS. This procedure consists of (1) the basic cell entry [GRA2020] and (2) a Mutual Authentication and Key Establishment (MAKE) procedure [MAE2021].

Note, that LDACS will foresee multiple security levels. To address the issue of the long service life of LDACS (i.e., possibly >30 years) and the security of current pre-quantum cryptography, these security levels include pre- and post-quantum cryptographic solutions. Limiting security data on the LDACS datalink as much as possible, to reserve as much space for actual user data transmission, is key in the LDACS security architecture, this is also reflected in the underlying cryptography: Pre-quantum solutions will rely on
elliptic curves [NIST2013], while post-quantum solutions consider Falcon [SON2021] [MAE2021] or similar lightweight PQC signature schemes, and SIKE or SABER as key establishment options [SIK2021] [ROY2020].

9.6.4. Message-in-transit Confidentiality, Integrity and Authenticity

The key material from the previous step can then be used to protect LDACS Layer 2 communications via applying encryption and integrity protection measures on the SNP layer of the LDACS protocol stack. As LDACS transports AOC and ATS data, the integrity of that data is most important, while confidentiality only needs to be applied to AOC data to protect business interests [ICAO2022]. This possibility of providing low layered confidentiality and integrity protection ensures a secure delivery of user data over the wireless link. Furthermore, it ensures integrity protection of LDACS control data.

9.7. Considerations on LDACS Security Impact on IPv6 Operational Security

In this part, considerations on IPv6 operational security in [RFC9099] and interrelations with the LDACS security additions are compared and evaluated to identify further protection demands. As IPv6 heavily relies on the Neighbor Discovery Protocol (NDP) [RFC4861], integrity and authenticity protection on the link-layer, as provided by LDACS, already help mitigate spoofing and redirection attacks. However, to also mitigate the threat of remote DDoS attacks, neighbor solicitation rate-limiting is recommended by RFC 9099. To prevent the threat of (D)DoS attacks in general on the LDACS access network, rate-limiting need to be performed on each network node in the network access. One approach is to filter for the total amount of possible LDACS AS-GS traffic per cell - i.e., of up to 1.4 Mbps user-data per cell and up to the amount of GS per service provider network times 1.4 Mbps.

10. IANA Considerations

This memo includes no request to IANA.

11. Acknowledgements

Thanks to all contributors to the development of LDACS and ICAO PT-T.

Thanks to Klaus-Peter Hauf, Bart Van Den Einden, and Pierluigi Fantappie for their comments to this draft.

Thanks to the Chair for Network Security and the research institute CODE for their comments and improvements.
Thanks to SBA Research Vienna for fruitful discussions on aeronautical communications concerning security incentives for industry and potential economic spillovers.

Thanks to the Aeronautical Communications group at the Institute of Communications and Navigation of the German Aerospace Center (DLR). With that, the authors would like to explicitly thank Miguel Angel Bellido-Manganell and Lukas Marcel Schalk for their thorough feedback.

12. Normative References

13. Informative References

[I-D.ietf-lisp-rfc6833bis]
Farinacci, D., Maino, F., Fuller, V., and A. Cabellos,
"Locator/ID Separation Protocol (LISP) Control-Plane",
Work in Progress, Internet-Draft, draft-ietf-lisp-rfc6833bis-30, 18 November 2020,

[ICAO2018] International Civil Aviation Organization (ICAO),

Appendix A. Selected Information from DO-350A

This appendix includes the continuity, availability, and integrity requirements applicable for LDACS defined in [DO350A].

The following terms are used here:

CPDLC Controller Pilot Data Link Communication
DT Delivery Time (nominal) value for RSP
ET Expiration Time value for RCP
FH Flight Hour
MA Monitoring and Alerting criteria
OT Overdue Delivery Time value for RSP
RCP Required Communication Performance
RSP Required Surveillance Performance
TT Transaction Time (nominal) value for RCP
Table 1: CPDLC Requirements for RCP 130

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ET</th>
<th>TT95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Time (sec)</td>
<td>130</td>
<td>67</td>
</tr>
<tr>
<td>Continuity</td>
<td>0.999</td>
<td>0.95</td>
</tr>
<tr>
<td>Availability</td>
<td>0.989</td>
<td>0.989</td>
</tr>
<tr>
<td>Integrity</td>
<td>1E-5 per FH</td>
<td>1E-5 per FH</td>
</tr>
</tbody>
</table>

Table 2: CPDLC Requirements for RCP 240/400

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RCP 240</th>
<th>RCP 240</th>
<th>RCP 400</th>
<th>RCP 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Time (sec)</td>
<td>240</td>
<td>210</td>
<td>400</td>
<td>350</td>
</tr>
<tr>
<td>Continuity</td>
<td>0.999</td>
<td>0.95</td>
<td>0.999</td>
<td>0.95</td>
</tr>
<tr>
<td>Availability</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
</tr>
<tr>
<td>Integrity</td>
<td>1E-5 per FH</td>
<td>1E-5 per FH</td>
<td>1E-5 per FH</td>
<td>1E-5 per FH</td>
</tr>
</tbody>
</table>

RCP Monitoring and Alerting Criteria in case of CPDLC:

- **MA-1:** The system shall be capable of detecting failures and configuration changes that would cause the communication service no longer meet the RCP specification for the intended use.
- **MA-2:** When the communication service can no longer meet the RCP specification for the intended function, the flight crew and/or the controller shall take appropriate action.
Table 3: ADS-C Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RSP 160</th>
<th>RSP 160</th>
<th>RSP 180</th>
<th>RSP 180</th>
<th>RSP 400</th>
<th>RSP 400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OT</td>
<td>DT95%</td>
<td>OT</td>
<td>DT95%</td>
<td>OT</td>
<td>DT95%</td>
</tr>
<tr>
<td>Transaction Time (sec)</td>
<td>160</td>
<td>90</td>
<td>180</td>
<td>90</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>Continuity</td>
<td>0.999</td>
<td>0.95</td>
<td>0.999</td>
<td>0.95</td>
<td>0.999</td>
<td>0.95</td>
</tr>
<tr>
<td>Availability</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
</tr>
<tr>
<td>Integrity</td>
<td>1E-5 per FH</td>
</tr>
</tbody>
</table>

RCP Monitoring and Alerting Criteria:

- MA-1: The system shall be capable of detecting failures and configuration changes that would cause the ADS-C service no longer meet the RSP specification for the intended function.
- MA-2: When the ADS-C service can no longer meet the RSP specification for the intended function, the flight crew and/or the controller shall take appropriate action.

Authors’ Addresses

Nils Mäurer (editor)
German Aerospace Center (DLR)
Münchner Strasse 20
82234 Wessling
Germany
Email: Nils.Maeurer@dlr.de

Thomas Gräupl (editor)
German Aerospace Center (DLR)
Münchner Strasse 20
82234 Wessling
Germany
Email: Thomas.Graeupl@dlr.de
Abstract

Some critical applications may use a wireless infrastructure. However, wireless networks exhibit a bandwidth of several orders of magnitude lower than wired networks. Besides, wireless transmissions are lossy by nature; the probability that a packet cannot be decoded correctly by the receiver may be quite high. In these conditions, providing high reliability and a low delay is challenging. This document lists the requirements of the Operation, Administration, and Maintenance (OAM) features are recommended to construct a predictable communication infrastructure on top of a collection of wireless segments. This document describes the benefits, problems, and trade-offs for using OAM in wireless networks to achieve Service Level Objectives (SLO).
Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction .. 3
 1.1. Terminology .. 4
 1.2. Acronyms .. 5
 1.3. Requirements Language 6
2. Role of OAM in RAW 6
 2.1. Link concept and quality 7
 2.2. Broadcast Transmissions 8
 2.3. Complex Layer 2 Forwarding 8
 2.4. End-to-end delay 8
3. Operation .. 8
 3.1. Information Collection 9
 3.2. Continuity Check 9
 3.3. Connectivity Verification 9
 3.4. Route Tracing 9
 3.5. Fault Verification/detection 10
 3.6. Fault Isolation/identification 10
4. Administration .. 10
 4.1. Worst-case metrics 11
 4.2. Efficient measurement retrieval (Passive OAM) 11
 4.3. Reporting OAM packets to the source (Active OAM) 12
5. Maintenance ... 13
 5.1. Soft transition after reconfiguration 13
 5.2. Predictive maintenance 13
6. Requirements ... 14
7. IANA Considerations 14
8. Security Considerations 14
9. Acknowledgments ... 14
10. Informative References 14
Authors’ Addresses .. 16
1. Introduction

Reliable and Available Wireless (RAW) is an effort that extends DetNet to approach end-to-end deterministic performances over a network that includes scheduled wireless segments. In wired networks, many approaches try to enable Quality of Service (QoS) by implementing traffic differentiation so that routers handle each type of packets differently. However, this differentiated treatment was expensive for most applications.

Deterministic Networking (DetNet) [RFC8655] has proposed to provide a bounded end-to-end latency on top of the network infrastructure, comprising both Layer 2 bridged and Layer 3 routed segments. Their work encompasses the data plane, OAM, time synchronization, management, control, and security aspects.

However, wireless networks create specific challenges. First of all, radio bandwidth is significantly lower than in wired networks. In these conditions, the volume of signaling messages has to be very limited. Even worse, wireless links are lossy: a Layer 2 transmission may or may not be decoded correctly by the receiver, depending on a broad set of parameters. Thus, providing high reliability through wireless segments is particularly challenging.

Wired networks rely on the concept of _links_. All the devices attached to a link receive any transmission. The concept of a link in wireless networks is somewhat different from what many are used to in wireline networks. A receiver may or may not receive a transmission, depending on the presence of a colliding transmission, the radio channel’s quality, and the external interference. Besides, a wireless transmission is broadcast by nature: any _neighboring_ device may be able to decode it. This document includes detailed information on the implications for the OAM features.

Last but not least, radio links present volatile characteristics. If the wireless networks use an unlicensed band, packet losses are not anymore temporally and spatially independent. Typically, links may exhibit a very bursty characteristic, where several consecutive packets may be dropped because of, e.g., temporary external interference. Thus, providing availability and reliability on top of the wireless infrastructure requires specific Layer 3 mechanisms to counteract these bursty losses.

Operations, Administration, and Maintenance (OAM) Tools are of primary importance for IP networks [RFC7276]. They define a toolset for fault detection, isolation, and performance measurement.
The primary purpose of this document is to detail the specific requirements of the OAM features recommended to construct a predictable communication infrastructure on top of a collection of wireless segments. This document describes the benefits, problems, and trade-offs for using OAM in wireless networks to provide availability and predictability.

1.1. Terminology

In this document, the term OAM will be used according to its definition specified in [RFC6291]. We expect to implement an OAM framework in RAW networks to maintain a real-time view of the network infrastructure, and its ability to respect the Service Level Objectives (SLO), such as delay and reliability, assigned to each data flow.

We re-use here the same terminology as [I-D.ietf-detnet-oam-framework]:

* OAM entity: a data flow to be monitored for defects and/or its performance metrics measured;

* Test End Point (TEP): OAM devices crossed when entering/exiting the network. In RAW, it corresponds mostly to the source or destination of a data flow. OAM message can be exchanged between two TEPs;

* Monitoring endPoint (MonEP): an OAM system along the flow; a MonEP MAY respond to an OAM message generated by the TEP;

* control/management/data plane: the control and management planes are used to configure and control the network (long-term). On a per-node basis, the data plane applies rules and policies for each packet. For example, selecting the time-frequency block or the next hop on a packet-by-packet basis. Relative to a data flow, the control and/or management plane can be out-of-band;

* Active measurement methods (as defined in [RFC7799]) modify a normal data flow by inserting novel fields, injecting specially constructed test packets [RFC2544]). It is critical for the quality of information obtained using an active method that generated test packets are in-band with the monitored data flow. In other words, a test packet is required to cross the same network nodes and links and receive the same Quality of Service (QoS) treatment as a data packet. Active methods may implement one of these two strategies:
- In-band: control information follows the same path as the data packets. In other words, a failure in the data plane may prevent the control information from reaching the destination (e.g., end-device or controller).

- out-of-band: control information is sent separately from the data packets. Thus, the behavior of control vs. data packets may differ;

* Passive measurement methods [RFC7799] infer information by observing unmodified existing flows.

We also adopt the following terminology, which is particularly relevant for RAW segments.

* piggybacking vs. dedicated control packets: control information may be encapsulated in specific (dedicated) control packets. Alternatively, it may be piggybacked in existing data packets, when the MTU is larger than the actual packet length. Piggybacking makes specifically sense in wireless networks, as the cost (bandwidth and energy) is not linear with the packet size.

* router-over vs. mesh under: a control packet is either forwarded directly to the layer-3 next hop (mesh under) or handled hop-by-hop by each router. While the latter option consumes more resources, it allows collecting additional intermediary information, particularly relevant in wireless networks.

* Defect: a temporary change in the network (e.g., a radio link which is broken due to a mobile obstacle);

* Fault: a definite change which may affect the network performance, e.g., a node runs out of energy.

* End-to-end delay: the time between the packet generation and its reception by the destination.

1.2. Acronyms

OAM Operations, Administration, and Maintenance

DetNet Deterministic Networking

PSE Path Selection Engine [I-D.pthubert-raw-architecture]

QoS Quality of Service

RAW Reliable and Available Wireless
SLO Service Level Objective

SNMP Simple Network Management Protocol

SDN Software-Defined Network

1.3. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Role of OAM in RAW

RAW networks expect to make the communications reliable and predictable over a wireless network infrastructure. Most critical applications will define an SLO required for the data flows it generates. RAW considers network plane protocol elements such as OAM to improve the RAW operation at the service and the forwarding sub-layers.

To respect strict guarantees, RAW relies on the Path Selection Engine (PSE) (as defined in [I-D.pthubert-raw-architecture]) to monitor and maintain the L3 network. An L2 scheduler may be used to allocate transmission opportunities, based on the radio link characteristics, SLO of the flows, the number of packets to forward. The PSE exploits the L2 resources reserved by the scheduler and organizes the L3 paths to introduce redundancy, fault tolerance and create backup paths.

OAM represents the core of the pre-provisioning process by supervising the network. It maintains a global view of the network resources to detect defects, faults, over-provisioning, anomalies.

Fault tolerance also assumes that multiple paths must be provisioned so that an end-to-end circuit remains operational regardless of the conditions. The Packet Replication and Elimination Function ([I-D.thubert-bier-replication-elimination]) on a node is typically controlled by the PSE. OAM mechanisms can be used to monitor that PREOF is working correctly on a node and within the domain.

To be energy-efficient, out-of-band OAM SHOULD only be used to report aggregated statistics (e.g., counters, histograms) from the nodes using, e.g., SNMP or Netconf/Restconf using YANG-based data models. The out-of-band OAM flow MAY use a dedicated control and management channel, dedicated for this purpose.
RAW supports both proactive and on-demand troubleshooting. Proactively, it is necessary to detect anomalies, report defects, or reduce over-provisioning if it is not required. However, on-demand may also be required to identify the cause of a specific defect. Indeed, some specific faults may only be detected with a global, detailed view of the network, which is too expensive to acquire in the normal operating mode.

The specific characteristics of RAW are discussed below.

2.1. Link concept and quality

In wireless networks, a _link_ does not exist physically. A device has a set of *neighbors* that correspond to all the devices that have a non-null probability of receiving its packets correctly. We make a distinction between:

- point-to-point (p2p) link with one transmitter and one receiver. These links are used to transmit unicast packets.
- point-to-multipoint (p2mp) link associates one transmitter and a collection of receivers. For instance, broadcast packets assume the existence of p2mp links to avoid duplicating a broadcast packet to reach each possible radio neighbor.

In scheduled radio networks, p2mp and p2p links are commonly not scheduled simultaneously to save energy and/or to reduce the number of collisions. More precisely, only one part of the neighbors may wake up at a given instant.

Anycast is used in p2mp links to improve the reliability. A collection of receivers are scheduled to wake up simultaneously, so that the transmission fails only if none of the receivers can decode the packet.

Each wireless link is associated with a link quality, often measured as the Packet Delivery Ratio (PDR), i.e., the probability that the receiver can decode the packet correctly. It is worth noting that this link quality depends on many criteria, such as the level of external interference, the presence of concurrent transmissions, or the radio channel state. This link quality is even time-variant. For p2mp links, consequently, we have a collection of PDR (one value per receiver). Other more sophisticated, aggregated metrics exist for these p2mp links, such as [anycast-property]
2.2. Broadcast Transmissions

The unicast transmission is delivered exclusively to the destination in modern switching networks. Wireless networks are much closer to the traditional *shared access* networks. Practically, unicast and broadcast frames are handled similarly at the physical layer. The link layer is just in charge of filtering the frames to discard irrelevant receptions (e.g., different unicast MAC addresses).

However, contrary to wired networks, we cannot ensure that a packet is received by *all* the devices attached to the Layer 2 segment. It depends on the radio channel state between the transmitter(s) and the receiver(s). In particular, concurrent transmissions may be possible or not, depending on the radio conditions (e.g., do the different transmitters use a different radio channel or are they sufficiently spatially separated?)

2.3. Complex Layer 2 Forwarding

Multiple neighbors may receive a transmission. Thus, anycast Layer 2 forwarding helps to maximize reliability by assigning multiple receivers to a single transmission. That way, the packet is lost only if *none* of the receivers decode it. Practically, it has been proven that different neighbors may exhibit very different radio conditions, and that reception independence may hold for some of them [anycast-property].

2.4. End-to-end delay

In a wireless network, additional transmissions opportunities are provisioned to accommodate packet losses. Thus, the end-to-end delay consists of:

* Transmission delay, which is fixed and depends mainly on the data rate, and the presence or absence of an acknowledgement.

* Residence time, corresponds to the buffering delay and depends on the schedule. To account for retransmissions, the residence time is equal to the difference between the time of last reception from the previous hop (among all the retransmissions) and the time of emission of the last retransmission.

3. Operation

OAM features will enable RAW with robust operation both for forwarding and routing purposes.
3.1. Information Collection

The model for exchanging information should be the same as for a DetNet network to ensure inter-operability. YANG may typically fulfill this objective.

However, RAW networks imply specific constraints (e.g., low bandwidth, packet losses, cost of medium access) that may require to minimize the volume of information to collect. Thus, we discuss in Section 4.2 different ways to collect information, i.e., transfer the OAM information physically from the emitter to the receiver. This corresponds to passive OAM as defined in [RFC7799].

3.2. Continuity Check

Similarly to DetNet, we need to verify that the source and the destination are connected (at least one valid path exists).

3.3. Connectivity Verification

As in DetNet, we have to verify the absence of misconnection. We focus here on the RAW specificities.

Because of radio transmissions’ broadcast nature, several receivers may be active at the same time to enable anycast Layer 2 forwarding. Thus, the connectivity verification must test any combination. We also consider priority-based mechanisms for anycast forwarding, i.e., all the receivers have different probabilities of forwarding a packet. To verify a delay SLO for a given flow, we must also consider all the possible combinations, leading to a probability distribution function for end-to-end transmissions. If this verification is implemented naively, the number of combinations to test may be exponential and too costly for wireless networks with low bandwidth.

3.4. Route Tracing

Wireless networks are broadcast by nature: a radio transmission can be decoded by any radio neighbor. In multihop wireless networks, several paths exist between two endpoints. In hub networks, a device may be covered by several Access Points. We should choose the most efficient path or AP, concerning specifically the reliability, and the delay.

Thus, multipath routing / multi-attachment can be viewed as making the network more fault-tolerant. Even better, we can exploit the broadcast nature of wireless networks: we may have multiple Monitoring Endpoints (MonEP) for each of these kinds of hop. While
it may be reasonable in the multi-attachment case, the complexity quickly increases with the path length. Indeed, each Maintenance Intermediate Endpoint has several possible next hops in the forwarding plane. Thus, all the possible paths between two maintenance endpoints should be retrieved, which may quickly become intractable if we apply a naive approach.

3.5. Fault Verification/detection

Wired networks tend to present stable performances. On the contrary, wireless networks are time-variant. We must consequently make a distinction between normal evolutions and malfunction.

3.6. Fault Isolation/identification

The network has isolated and identified the cause of the fault. While DetNet already expects to identify malfunctions, some problems are specific to wireless networks. We must consequently collect metrics and implement algorithms tailored for wireless networking.

For instance, the decrease in the link quality may be caused by several factors: external interference, obstacles, multipath fading, mobility. It is fundamental to be able to discriminate the different causes to make the right decision.

4. Administration

The RAW network has to expose a collection of metrics to support an operator making proper decisions, including:

* Packet losses: the time-window average and maximum values of the number of packet losses have to be measured. Many critical applications stop working if a few consecutive packets are dropped;

* Received Signal Strength Indicator (RSSI) is a very common metric in wireless to denote the link quality. The radio chipset is in charge of translating a received signal strength into a normalized quality indicator;

* Delay: the time elapsed between a packet generation / enqueuing and its reception by the next hop;

* Buffer occupancy: the number of packets present in the buffer, for each of the existing flows.
* Battery lifetime: the expected remaining battery lifetime of the device. Since many RAW devices might be battery-powered, this is an important metric for an operator to make proper decisions.

* Mobility: if a device is known to be mobile, this might be considered by an operator to take proper decisions.

These metrics should be collected per device, virtual circuit, and path, as DetNet already does. However, in RAW, we have to deal with them at a finer granularity:

* per radio channel to measure, e.g., the level of external interference, and to be able to apply counter-measures (e.g., blacklisting).

* per physical radio technology / interface, if a device has multiple NICs.

* per link to detect misbehaving link (asymmetrical link, fluctuating quality).

* per resource block: a collision in the schedule is particularly challenging to identify in radio networks with spectrum reuse. In particular, a collision may not be systematic (depending on the radio characteristics and the traffic profile).

4.1. Worst-case metrics

RAW inherits the same requirements as DetNet: we need to know the distribution of a collection of metrics. However, wireless networks are known to be highly variable. Changes may be frequent, and may exhibit a periodical pattern. Collecting and analyzing this amount of measurements is challenging.

Wireless networks are known to be lossy, and RAW has to implement strategies to improve reliability on top of unreliable links. Reliability is typically achieved through Automatic Repeat Request (ARQ), and Forward Error Correction (FEC). Since the different flows don’t have the same SLO, RAW must adjust the ARQ and FEC based on the link and path characteristics.

4.2. Efficient measurement retrieval (Passive OAM)

We have to minimize the number of statistics / measurements to exchange:

* energy efficiency: low-power devices have to limit the volume of monitoring information since every bit consumes energy.
* bandwidth: wireless networks exhibit a bandwidth significantly lower than wired, best-effort networks.

* per-packet cost: it is often more expensive to send several packets instead of combining them in a single link-layer frame.

In conclusion, we have to take care of power and bandwidth consumption. The following techniques aim to reduce the cost of such maintenance:

* on-path collection: some control information is inserted in the data packets if they do not fragment the packet (i.e., the MTU is not exceeded). Information Elements represent a standardized way to handle such information. IP hop by hop extension headers may help to collect metrics all along the path;

* flags/fields: we have to set-up flags in the packets to monitor to be able to monitor the forwarding process accurately. A sequence number field may help to detect packet losses. Similarly, path inference tools such as [ipath] insert additional information in the headers to identify the path followed by a packet a posteriori.

* hierarchical monitoring: localized and centralized mechanisms have to be combined together. Typically, a local mechanism should continuously monitor a set of metrics and trigger remote OAM exchanges only when a fault is detected (but possibly not identified). For instance, local temporary defects must not trigger expensive OAM transmissions. Besides, the wireless segments often represent the weakest parts of a path: the volume of control information they produce has to be fixed accordingly.

Several passive techniques can be combined. For instance, the DetNet forwarding sublayer MAY combine In-band Network Telemetry (INT) with P4, iOAM and iPath to compute and report different statistics in the track (e.g., number of link-layer retransmissions, link reliability).

4.3. Reporting OAM packets to the source (Active OAM)

The Test EndPoint will collect measurements from the OAM probes received in the monitored track. However, the aggregated statistics must then be reported to the other Test Endpoint that injected the probes. Unfortunately, the monitored track MAY be unidirectional. In this case, the statistics have to be reported out-of-band (through, e.g., a dedicated control or management channel).
It is worth noting that Active OAM and Passive OAM techniques are not mutually exclusive. In particular, Active OAM is useful when a statistic cannot be acquired accurately passively.

Besides, Active OAM may also use piggybacking techniques: the OAM packet may be piggybacked in a frame if the MTU is sufficient. Indeed, increasing the number of transmissions in radio networks may impact very negatively the performance of radio networks, particularly for scheduled access, with fixed timeslot durations. Thus, OAM packets may be buffered until another frame has sufficient space, and has to be transmitted to the same neighbor. In conclusion, active OAM packets may be out-of-band or in-band.

5. Maintenance

Maintenance needs to facilitate the maintenance (repairs and upgrades). In wireless networks, repairs are expected to occur much more frequently, since the link quality may be highly time-variant. Thus, maintenance represents a key feature for RAW.

5.1. Soft transition after reconfiguration

Because of the wireless medium, the link quality may fluctuate, and the network needs to reconfigure itself continuously. During this transient state, flows may begin to be gradually re-forwarded, consuming resources in different parts of the network. OAM has to make a distinction between a metric that changed because of a legal network change (e.g., flow redirection) and an unexpected event (e.g., a fault).

5.2. Predictive maintenance

RAW needs to implement self-optimization features. While the network is configured to be fault-tolerant, a reconfiguration may be required to keep on respecting long-term objectives. Obviously, the network keeps on respecting the SLO after a node's crash, but a reconfiguration is required to handle future faults. In other words, the reconfiguration delay MUST be strictly smaller than the inter-fault time.

The network must continuously retrieve the state of the network, to judge about the relevance of a reconfiguration, quantifying:

* the cost of the sub-optimality: resources may not be used optimally (e.g., a better path exists);
* the reconfiguration cost: the controller needs to trigger some reconfigurations. For this transient period, resources may be twice reserved, and control packets have to be transmitted. Thus, reconfiguration may only be triggered if the gain is significant.

6. Requirements

This section lists requirements for OAM in a RAW domain:

1. Each Test and Monitoring Endpoint device MUST expose a list of available metrics per track. It MUST at least provide the end-to-end Packet Delivery Ratio, end-to-end latency, and Maximum Consecutive Failures (MCF).

2. PREOF functions MUST guarantee order preservation in the (sub)track.

3. OAM nodes MUST provide aggregated statistics to reduce the volume of traffic for measurements. They MAY send a compressed distribution of measurements, or MIN / MAX values over a time interval.

4. Monitoring Endpoints SHOULD support route tracing with passive OAM techniques.

7. IANA Considerations

This document has no actionable requirements for IANA. This section can be removed before the publication.

8. Security Considerations

This section will be expanded in future versions of the draft.

9. Acknowledgments

TBD

10. Informative References

[anycast-property]

Authors’ Addresses

Fabrice Theoleyre
CNRS
Building B
300 boulevard Sebastien Brant – CS 10413
67400 Illkirch – Strasbourg
France
Phone: +33 368 85 45 33
Email: fabrice.theoleyre@cnrs.fr
URI: http://www.theoleyre.eu

Georgios Z. Papadopoulos
IMT Atlantique
Office B00 – 102A
2 Rue de la Chataigneraie
35510 Cesson-Sevigne – Rennes
France
Phone: +33 299 12 70 04
Email: georgios.papadopoulos@imt-atlantique.fr

Greg Mirsky
Ericsson
Email: gregimirsky@gmail.com
Carlos J. Bernardos
Universidad Carlos III de Madrid
Av. Universidad, 30
28911 Leganes, Madrid
Spain
Phone: +34 91624 6236
Email: cjbc@it.uc3m.es
URI: http://www.it.uc3m.es/cjbc/
Abstract

The wireless medium presents significant specific challenges to achieve properties similar to those of wired deterministic networks. At the same time, a number of use-cases cannot be solved with wires and justify the extra effort of going wireless. This document presents wireless use-cases (such as aeronautical communications, amusement parks, industrial applications, pro audio and video, gaming, UAV and V2V control, edge robotics and emergency vehicles) demanding reliable and available behavior.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction ... 3
2. Aeronautical Communications 5
 2.1. Problem Statement ... 5
 2.2. Specifics .. 6
 2.3. Challenges ... 7
 2.4. The Need for Wireless 8
 2.5. Requirements for RAW 8
 2.5.1. Non-latency critical considerations 9
3. Amusement Parks .. 9
 3.1. use-case Description 9
 3.2. Specifics .. 9
 3.3. The Need for Wireless 10
 3.4. Requirements for RAW 10
 3.4.1. Non-latency critical considerations 11
4. Wireless for Industrial Applications 11
 4.1. use-case Description 11
 4.2. Specifics .. 11
 4.2.1. Control Loops .. 11
 4.2.2. Unmeasured Data 12
 4.3. The Need for Wireless 12
 4.4. Requirements for RAW 13
 4.4.1. Non-latency critical considerations 14
5. Pro Audio and Video .. 14
 5.1. use-case Description 14
 5.2. Specifics .. 14
 5.2.1. Uninterrupted Stream Playback 14
 5.2.2. Synchronized Stream Playback 14
 5.3. The Need for Wireless 15
 5.4. Requirements for RAW 15
 5.4.1. Non-latency critical considerations 15
6. Wireless Gaming ... 15
 6.1. use-case Description 15
 6.2. Specifics .. 16
 6.3. The Need for Wireless 16
 6.4. Requirements for RAW 16
 6.4.1. Non-latency critical considerations 17
1. Introduction

Based on time, resource reservation, and policy enforcement by distributed shapers, Deterministic Networking provides the capability to carry specified unicast or multicast data streams for real-time applications with extremely low data loss rates and bounded latency, to support time-sensitive and mission-critical applications on a converged enterprise infrastructure.

Deterministic Networking in the IP world is an attempt to eliminate packet loss for a committed bandwidth while ensuring a worst case end-to-end latency, regardless of the network conditions and across technologies. By leveraging on lower (L2 and below) capabilities, L3 can exploit the use of a service layer, steering over multiple technologies, and using media independent signaling to provide high reliability, precise time delivery, and rate enforcement. Deterministic networking can be seen as a set of new Quality of Service (QoS) guarantees of worst-case delivery. IP networks become more deterministic when the effects of statistical multiplexing (jitter and collision loss) are mostly eliminated. This requires a
tight control of the physical resources to maintain the amount of traffic within the physical capabilities of the underlying technology, e.g., using time-shared resources (bandwidth and buffers) per circuit, and/or by shaping and/or scheduling the packets at every hop.

Key attributes of Deterministic Networking include:

* time synchronization on all the nodes,
* centralized computation of network-wide deterministic paths,
* multi-technology path with co-channel interference minimization,
* frame preemption and guard time mechanisms to ensure a worst-case delay, and
* new traffic shapers within and at the edge to protect the network.

Wireless operates on a shared medium, and transmissions cannot be guaranteed to be fully deterministic due to uncontrolled interferences, including self-induced multipath fading. Reliable and Available Wireless (RAW) is an effort to provide Deterministic Networking Mechanisms on across a multi-hop path that includes a wireless physical layer. Making Wireless Reliable and Available is even more challenging than it is with wires, due to the numerous causes of loss in transmission that add up to the congestion losses and the delays caused by overbooked shared resources.

The wireless and wired media are fundamentally different at the physical level, and while the generic Problem Statement [RFC8557] for DetNet applies to the wired as well as the wireless medium, the methods to achieve RAW necessarily differ from those used to support Time-Sensitive Networking over wires, e.g., due to the wireless radio channel specifics.

So far, Open Standards for Deterministic Networking have prevalently been focused on wired media, with Audio/Video Bridging (AVB) and Time Sensitive Networking (TSN) at the IEEE and DetNet [RFC8655] at the IETF. But wires cannot be used in several cases, including mobile or rotating devices, rehabilitated industrial buildings, wearable or in-body sensory devices, vehicle automation and multiplayer gaming.

Purpose-built wireless technologies such as [ISA100], which incorporates IPv6, were developed and deployed to cope for the lack of open standards, but they yield a high cost in OPEX and CAPEX and are limited to very few industries, e.g., process control, concert instruments or racing.
This is now changing [I-D.ietf-raw-technologies]:

* IMT-2020 has recognized Ultra-Reliable Low-Latency Communication (URLLC) as a key functionality for the upcoming 5G.

* IEEE 802.11 has identified a set of real-applications [IEEE80211-RT-TIG] which may use the IEEE802.11 standards. They typically emphasize strict end-to-end delay requirements.

* The IETF has produced an IPv6 stack for IEEE Std. 802.15.4 TimeSlotted Channel Hopping (TSCH) and an architecture [RFC9030] that enables RAW on a shared MAC.

Experiments have already been conducted with IEEE802.1 TSN over IEEE802.11be [IEEE80211BE]. This mode enables time synchronization, and time-aware scheduling (trigger based access mode) to support TSN flows.

This draft extends the "Deterministic Networking use-cases" document [RFC8578] and describes several additional use-cases which require "reliable/predictable and available" flows over wireless links and possibly complex multi-hop paths called Tracks. This is covered mainly by the "Wireless for Industrial Applications" use-case, as the "Cellular Radio" is mostly dedicated to the (wired) transport part of a Radio Access Network (RAN). Whereas the "Wireless for Industrial Applications" use-case certainly covers an area of interest for RAW, it is limited to 6TiSCH, and thus its scope is narrower than the use-cases described next in this document.

2. Aeronautical Communications

Aircraft are currently connected to ATC (Air-Traffic Control) and AOC (Airline Operational Control) via voice and data communications systems through all phases of a flight. Within the airport terminal, connectivity is focused on high bandwidth communications while during en-route high reliability, robustness and range are the focus.

2.1. Problem Statement

Up to 2020, civil air traffic has been growing constantly at a compound rate of 5.8% per year [ACI19] and despite the severe impact of the COVID-19 pandemic, air traffic growth is expected to resume very quickly in post-pandemic times [IAT20] [IAC20]. Thus, legacy systems in air traffic management (ATM) are likely to reach their capacity limits and the need for new aeronautical communication technologies becomes apparent. Especially problematic is the saturation of VHF band in high density areas in Europe, the US, and Asia [KEAV20] [FAA20] calling for suitable new digital approaches.
such as AeroMACS for airport communications, SatCOM for remote domains, and LDACS as long-range terrestrial aeronautical communications system. Making the frequency spectrum’s usage more efficient a transition from analog voice to digital data communication [PLA14] is necessary to cope with the expected growth of civil aviation and its supporting infrastructure. A promising candidate for long range terrestrial communications, already in the process of being standardized in the International Civil Aviation Organization (ICAO), is the L-band Digital Aeronautical Communications System (LDACS) [ICAO18] [I-D.ietf-raw-ldacs].

2.2. Specifics

During the creation process of new communications system, analog voice is replaced by digital data communication. This sets a paradigm shift from analog to digital wireless communications and supports the related trend towards increased autonomous data processing that the Future Communications Infrastructure (FCI) in civil aviation must provide. The FCI is depicted in Figure 1:
2.3. Challenges

This paradigm change brings a lot of new challenges:

* Efficiency: It is necessary to keep latency, time and data overhead (routing, security) of new aeronautical datalinks at a minimum.
* Modularity: Systems in avionics usually operate up to 30 years, thus solutions must be modular, easily adaptable and updatable.

* Interoperability: All 192 members of the international Civil Aviation Organization (ICAO) must be able to use these solutions.

* Dynamicity: the communication infrastructure needs to accommodate mobile devices (airplanes) that move extremely fast.

2.4. The Need for Wireless

In a high mobility environment such as aviation, the envisioned solutions to provide worldwide coverage of data connections with in-flight aircraft require a multi-system, multi-link, multi-hop approach. Thus air, ground and space-based datalink providing technologies will have to operate seamlessly together to cope with the increasing needs of data exchange between aircraft, air traffic controller, airport infrastructure, airlines, air network service providers (ANSPs) and so forth. Thus, making use of wireless technologies is a must in tackling this enormous need for a worldwide digital aeronautical datalink infrastructure.

2.5. Requirements for RAW

Different safety levels need to be supported, from extremely safety critical ones requiring low latency, such as a WAKE warning - a warning that two aircraft come dangerously close to each other - and high resiliency, to less safety critical ones requiring low-medium latency for services such as WXGRAPH - graphical weather data.

Overhead needs to be kept at a minimum since aeronautical data links provide comparatively small data rates in the order of kbit/s.

Policy needs to be supported when selecting data links. The focus of RAW here should be on the selectors, responsible for the track a packet takes to reach its end destination. This would minimize the amount of routing information that must travel inside the network because of precomputed routing tables with the selector being responsible for choosing the most appropriate option according to policy and safety.
2.5.1. Non-latency critical considerations

Achieving low latency is a requirement for aeronautics communications, though the expected latency is not extremely low and what it is important is to keep the overall latency bounded under a certain threshold. This use-case is not latency-critical from that viewpoint. On the other hand, given the controlled environment, end-to-end mechanisms can be applied to guarantee bounded latency where needed.

3. Amusement Parks

3.1. use-case Description

The digitalization of Amusement Parks is expected to decrease significantly the cost for maintaining the attractions. Such deployment is a mix between industrial automation (i.e., Smart Factories) and multimedia entertainment applications.

Attractions may rely on a large set of sensors and actuators, which react in real time. Typical applications comprise:

* Emergency: safety has to be preserved, and must stop the attraction when a failure is detected.

* Video: augmented and virtual realities are integrated in the attraction. Wearable mobile devices (e.g., glasses, virtual reality headset) need to offload one part of the processing tasks.

* Real-time interactions: visitors may interact with an attraction, like in a real-time video game. The visitors may virtually interact with their environment, triggering actions in the real world (through actuators) [KOB12].

* Geolocation: visitors are tracked with a personal wireless tag so that their user experience is improved.

* Predictive maintenance: statistics are collected to predict the future failures, or to compute later more complex statistics about the attraction’s usage, the downtime or its popularity for example.

3.2. Specifics

Amusement parks comprise a variable number of attractions, mostly outdoor, over a large geographical area. The IT infrastructure is typically multi-scale:
* Local area: the sensors and actuators controlling the attractions are co-located. Control loops trigger only local traffic, with a small end-to-end delay, typically inferior to 10 ms, like classical industrial systems [IEEE80211-RT-TIG].

* Wearable mobile devices are free to move in the park. They exchange traffic locally (identification, personalization, multimedia) or globally (billing, child tracking).

* Computationally intensive applications offload some tasks. Edge computing seems an efficient way to implement real-time applications with offloading. Some non-time-critical tasks may rather use the cloud (predictive maintenance, marketing).

3.3. The Need for Wireless

Amusement parks cover large areas, and a global interconnection would require a huge length of cables. Wireless also increases the reconfigurability, enabling to update an attraction at a lower cost. The frequent renewal helps to increase the customer loyalty.

Some parts of the attraction are mobile, like trucks of a roller-coaster or robots. Since cables are prone to frequent failures in this situation, wireless transmissions are recommended.

Wearable devices are extensively used for a user experience personalization. They typically need to support wireless transmissions. Personal tags may help to reduce the operating costs [DISNEY15] and to increase the number of charged services provided to the audience (e.g., VIP tickets or interactivity). Some applications rely on more sophisticated wearable devices such as digital glasses or Virtual Reality (VR) headsets for an immersive experience.

3.4. Requirements for RAW

The network infrastructure must support heterogeneous traffic, with very different critical requirements. Thus, flow isolation must be provided.

The transmissions must be scheduled appropriately even in presence of mobile devices. While the [RFC9030] already proposes an architecture for synchronized, IEEE Std. 802.15.4 Time-Slotted Channel Hopping (TSCH) networks, the industry requires a multi-technology solution, able to guarantee end-to-end requirements across heterogeneous technologies, with strict SLA requirements.
Nowadays, long-range wireless transmissions are used mostly for best-effort traffic. On the contrary, [IEEE802.1TSN] is used for critical flows using Ethernet devices. However, IP enabled technology is required to interconnect large areas, independent of the PHY and MAC layers.

It is expected that several different technologies (long vs. short range) are deployed, which have to cohabit in the same area. Thus, we need to provide layer-3 mechanisms able to exploit multiple co-interfering technologies.

3.4.1. Non-latency critical considerations

While some of the applications in this use-case involve control loops (e.g., sensors and actuators) that require bounded latencies below 10 ms, that can therefore be considered latency critical, there are other applications as well that mostly demand reliability (e.g., safety related, or maintenance).

4. Wireless for Industrial Applications

4.1. use-case Description

A major use-case for networking in Industrial environments is the control networks where periodic control loops operate between a collection of sensors that measure a physical property such as the temperature of a fluid, a Programmable Logic Controller (PLC) that decides an action such as warm up the mix, and actuators that perform the required action, such as the injection of power in a resistor.

4.2. Specifics

4.2.1. Control Loops

Process Control designates continuous processing operations, like heating Oil in a refinery or mixing drinking soda. Control loops in the Process Control industry operate at a very low rate, typically four times per second. Factory Automation, on the other hand, deals with discrete goods such as individual automobile parts, and requires faster loops, in the order of milliseconds. Motion control that monitors dynamic activities may require even faster rates in the order of and below the millisecond. Finally, some industries exhibit hybrid behaviors, like canned soup that will start as a process industry while mixing the food and then operate as a discrete manufacturing when putting the final product in cans and shipping them.
In all those cases, a packet must flow reliably between the sensor and the PLC, be processed by the PLC, and sent to the actuator within the control loop period. In some particular use-cases that inherit from analog operations, jitter might also alter the operation of the control loop. A rare packet loss is usually admissible, but typically 4 losses in a row will cause an emergency halt of the production and incur a high cost for the manufacturer.

Additional details and use-cases related to Industrial applications and their RAW requirements can be found in [I-D.ietf-raw-industrial-requirements].

4.2.2. Unmeasured Data

A secondary use-case deals with monitoring and diagnostics. This so-called unmeasured data is essential to improve the performances of a production line, e.g., by optimizing real-time processing or maintenance windows using Machine Learning predictions. For the lack of wireless technologies, some specific industries such as Oil and Gas have been using serial cables, literally by the millions, to perform their process optimization over the previous decades. But few industries would afford the associated cost and the Holy Grail of the Industrial Internet of Things is to provide the same benefits to all industries, including SmartGrid, Transportation, Building, Commercial and Medical. This requires a cheap, available and scalable IP-based access technology.

Inside the factory, wires may already be available to operate the Control Network. But unmeasured data are not welcome in that network for several reasons. On the one hand it is rich and asynchronous, meaning that it may influence the deterministic nature of the control operations and impact the production. On the other hand, this information must be reported to the carpeted floor over IP, which means the potential for a security breach via the interconnection of the Operational Technology (OT) network with the Internet technology (IT) network and possibly enable a rogue access.

4.3. The Need for Wireless

Ethernet cables used on a robot arm are prone to breakage after a few thousands of flexions, a lot faster than a power cable that is wider in diameter, and more resilient. In general, wired networking and mobile parts are not a good match, mostly in the case of fast and recurrent activities, as well as rotation.
When refurbishing older premises that were built before the Internet age, power is usually available everywhere, but data is not. It is often impractical, time consuming and expensive to deploy an Ethernet fabric across walls and between buildings. Deploying a wire may take months and cost tens of thousands of US Dollars.

Even when wiring exists, like in the case of an existing control network, asynchronous IP packets such as diagnostics may not be welcome for operational and security reasons. For those packets, the option to create a parallel wireless network offers a credible solution that can scale with the many sensors and actuators that equip every robot, every valve and fan that are deployed on the factory floor. It may also help detect and prevent a failure that could impact the production, like the degradation (vibration) of a cooling fan on the ceiling. IEEE Std. 802.15.4 Time-Slotted Channel Hopping (TSCH) [RFC7554] is a promising technology for that purpose, mostly if the scheduled operations enable to use the same network by asynchronous and deterministic flows in parallel.

4.4. Requirements for RAW

As stated by the "Deterministic Networking Problem Statement" [RFC8557], a Deterministic Network is backwards compatible with (capable of transporting) statistically multiplexed traffic while preserving the properties of the accepted deterministic flows. While the 6TiSCH Architecture [RFC9030] serves that requirement, the work at 6TiSCH was focused on best-effort IPv6 packet flows. RAW should be able to lock so-called hard cells for use by a centralized scheduler, and leverage time and spatial diversity over a graph of end-to-end paths called a Track that is based on those cells.

Over the course of the recent years, major Industrial Protocols (e.g., [ODVA] with EtherNet/IP [EIP] and [PROFINET]) have been migrating towards Ethernet and IP. In order to unleash the full power of the IP hourglass model, it should be possible to deploy any application over any network that has the physical capacity to transport the industrial flow, regardless of the MAC/PHY technology, wired or wireless, and across technologies. RAW mechanisms should be able to setup a Track over a wireless access segment and a wired or wireless backbone to report both sensor data and critical monitoring within a bounded latency and maintain the high reliability of teh flows over time. It is also important to ensure that RAW solutions are interoperable with existing wireless solutions in place, and with legacy equipment which capabilities can be extended using retrofitting. Maintainability, as a broader concept than reliability is also important in industrial scenarios [MAR19].
4.4.1. Non-latency critical considerations

Monitoring and diagnostics applications do not require latency critical communications, but demand reliable and scalable communications. On the other hand, process control applications involve control loops that require a bounded latency, thus are latency critical, but can be managed end-to-end, and therefore DetNet mechanisms can be applied in conjunction with RAW mechanisms.

5. Pro Audio and Video

5.1. use-case Description

Many devices support audio and video streaming by employing 802.11 wireless LAN. Some of these applications require low latency capability. For instance, when the application provides interactive play, or when the audio plays in real time - meaning live for public addresses in train stations or in theme parks.

The professional audio and video industry ("ProAV") includes:

* Virtual Reality / Augmented Reality (VR/AR)
* Production and post-production systems such as CD and Blue-Ray disk mastering.
* Public address, media and emergency systems at large venues (e.g., airports, train stations, stadiums, and theme parks).

5.2. Specifics

5.2.1. Uninterrupted Stream Playback

Considering the uninterrupted audio or video stream, a potential packet loss during the transmission of audio or video flows cannot be tackled by re-trying the transmission, as it is done with file transfer, because by the time the packet lost has been identified it is too late to proceed with packet re-transmission. Buffering might be employed to provide a certain delay which will allow for one or more re-transmissions, however such approach is not efficient in application where delays are not acceptable.

5.2.2. Synchronized Stream Playback

In the context of ProAV, latency is the time between the transmitted signal over a stream and its reception. Thus, for sound to remain synchronized to the movement in the video, the latency of both the audio and video streams must be bounded and consistent.
5.3. The Need for Wireless

The devices need the wireless communication to support video streaming via IEEE 802.11 wireless LAN for instance. Wireless communications provide huge advantages in terms of simpler deployments in many scenarios, where the use of a wired alternative would not be feasible. Similarly, in live events, mobility support makes wireless communications the only viable approach.

Deployed announcement speakers, for instance along the platforms of the train stations, need the wireless communication to forward the audio traffic in real time.

5.4. Requirements for RAW

The network infrastructure needs to support heterogeneous types of traffic (including QoS).

Content delivery with bounded (lowest possible) latency.

The deployed network topology should allow for multipath. This will enable for multiple streams to have different (and multiple) paths (tracks) through the network to support redundancy.

5.4.1. Non-latency critical considerations

For synchronized streaming, latency must be bounded, and therefore, depending on the actual requirements, this can be considered as latency critical. However, the most critical requirement of this use-case is reliability, by the network providing redundancy. Note that in many cases, wireless is only present in the access, while RAW mechanisms could be applied, but other wired segments are also involved (like the Internet), and therefore latency cannot be guaranteed.

6. Wireless Gaming

6.1. use-case Description

The gaming industry includes [IEEE80211RTA] real-time mobile gaming, wireless console gaming and cloud gaming. For RAW, wireless console gaming is the most relevant one. We next summarize the three:

* Real-time Mobile Gaming: Different from traditional games, real time mobile gaming is very sensitive to network latency and stability. The mobile game can connect multiple players together in a single game session and exchange data messages between game server and connected players. Real-time means the feedback should
present on screen as users operate in game. For good game experience, the end-to-end (E2E) latency plus game servers processing time must be the same for all players and should not be noticeable as the game is played.

* Wireless Console Gaming: Playing online on a console has 2 types of internet connectivity, which is either wired or Wi-Fi. Most of the gaming consoles today support Wi-Fi 5. But Wi-Fi has an especially bad reputation among the gaming community. The main reasons are high latency, lag spikes, and jitter.

* Cloud Gaming: The cloud gaming requires low latency capability as the user commands in a game session need to be sent back to the cloud server, the cloud server would update game context depending on the received commands, and the cloud server would render the picture/video to be displayed at user devices and stream the picture/video content to the user devices. User devices might very likely be connected wirelessly.

6.2. Specifics

While a lot of details can be found on [IEEE80211RTA], we next summarize the main requirements in terms of latency, jitter and packet loss:

* Intra BSS latency is less than 5 ms.

* Jitter variance is less than 2 ms.

* Packet loss is less than 0.1 percent.

6.3. The Need for Wireless

Gaming is evolving towards wireless, as players demand being able to play anywhere, and the game requires a more immersive experience including body movements. Besides, the industry is changing towards playing from mobile phones, which are inherently connected via wireless technologies. Wireless controllers are the rule in modern gaming, with increasingly sophisticated interactions (e.g., haptic feedback, augmented reality).

6.4. Requirements for RAW

* Time sensitive networking extensions: extensions, such as time-aware shaping and redundancy (FRE) can be explored to address congestion and reliability problems present in wireless networks.
* Priority tagging (Stream identification): one basic requirement to provide better QoS for time-sensitive traffic is the capability to identify and differentiate time-sensitive packets from other (like best-effort) traffic.

* Time-aware shaping: this capability (defined in IEEE 802.1Qbv) consists of gates to control the opening/closing of queues that share a common egress port within an Ethernet switch. A scheduler defines the times when each queue opens or close, therefore eliminating congestion and ensuring that frames are delivered within the expected latency bounds. Note thought, that while this requirement needs to be signalled by RAW mechanisms, it would be actually served by the lower layer.

* Dual/multiple link: due to the competitions and interference are common and hardly in control under wireless network, to improve the latency stability, dual/multiple link proposal is brought up to address this issue.

* Admission Control: congestion is a major cause of high/variable latency and it is well known that if the traffic load exceeds the capability of the link, QoS will be degraded. QoS degradation maybe acceptable for many applications today, however emerging time-sensitive applications are highly susceptible to increased latency and jitter. To better control QoS, it is important to control access to the network resources.

6.4.1. Non-latency critical considerations

Depending on the actual scenario, and on use of Internet to interconnect different users, the communication’s requirements of this use-case might be considered as latency critical due to the need of bounded latency. But note that in most of these scenarios, part of the communication path is not wireless and DetNet mechanisms cannot be applied easily (e.g., when the public Internet is involved), and therefore in these cases, reliability is the critical requirement.

7. Unmanned Aerial Vehicles and Vehicle-to-Vehicle platooning and control

7.1. use-case Description

Unmanned Aerial Vehicles (UAVs) are becoming very popular for many different applications, including military and civil use-cases. The term drone is commonly used to refer to a UAV.
UAVs can be used to perform aerial surveillance activities, traffic monitoring (i.e., the Spanish traffic control has recently introduced a fleet of drones for quicker reactions upon traffic congestion related events), support of emergency situations, and even transportation of small goods (e.g., medicine in rural areas).

Similarly to UAVs, other time of vehicles (such as cars) can also travel in platoons. Most of the considerations made for UAVs in this section apply to vehicle-to-vehicle (V2V) scenarios.

UAVs/vehicles typically have various forms of wireless connectivity:

* Cellular: for communication with the control center, for remote maneuvering as well as monitoring of the drone;

* IEEE 802.11: for inter-drone communications (i.e., platooning) and providing connectivity to other devices (i.e., acting as Access Point).

Note that autonomous cars share many of the characteristics of the aforementio UAV case, and therefore it is of interest for RAW.

7.2. Specifics

Some of the use-cases/tasks involving UAVs require coordination among UAVs. Others involve complex compute tasks that might not be performed using the limited computing resources that a drone typically has. These two aspects require continuous connectivity with the control center and among UAVs.

Remote maneuvering of a drone might be performed over a cellular network in some cases, however, there are situations that need very low latency and deterministic behavior of the connectivity. Examples involve platooning of drones or share of computing resources among drones (like, a drone offload some function to a neighboring drone).

7.3. The Need for Wireless

UAVs cannot be connected through any type of wired media, so it is obvious that wireless is needed.

7.4. Requirements for RAW

The network infrastructure is composed by the UAVs themselves, requiring self-configuration capabilities.
Heterogeneous types of traffic need to be supported, from extremely critical ones requiring ultra-low latency and high resiliency, to traffic requiring low-medium latency.

When a given service is decomposed into functions -- hosted at different UAVs -- chained, each link connecting two given functions would have a well-defined set of requirements (e.g., latency, bandwidth and jitter) that must be met.

7.4.1. Non-latency critical considerations

Today’s solutions keep local the processing operations that are critical and would demand an ultra-low latency communication to be offloaded. Therefore, in this use-case, the critical requirement is reliability, and only for some platooning and inter-drone communications latency is critical.

8. Edge Robotics control

8.1. use-case Description

The Edge Robotics scenario consists of several robots, deployed in a given area (like a shopping mall), inter-connected via an access network to a network’s edge device or a data center. The robots are connected to the edge so complex computational activities are not executed locally at the robots but offloaded to the edge. This brings additional flexibility in the type of tasks that the robots do, as well as reducing the costs of robot manufacturing (due to their lower complexity), and enabling complex tasks involving coordination among robots (that can be more easily performed if robots are centrally controlled).

Simple examples of the use of multiples robots are cleaning, video surveillance, search and rescue operations, and delivering of goods from warehouses to shops. Multiple robots are simultaneously instructed to perform individual tasks by moving the robotic intelligence from the robots to the network’s edge (like a data center). That enables easy synchronization, scalable solution, and on-demand option to create flexible fleet of robots.

Robots would have various forms of wireless connectivity:

* IEEE 802.11: for connection to the edge and also inter-robot communications (i.e., for coordinated actions).

* Cellular: as an additional communication link to the edge, though primarily as backup, since ultra-low latency is needed.
8.2. Specifics

Some of the use-cases/tasks involving robots might benefit from decomposition of a service in small functions that are distributed and chained among robots and the edge. These require continuous connectivity with the control center and among drones.

Robot control is an activity requiring very low latency between the robot and the location where the control intelligence resides (which might be the edge or another robot).

8.3. The Need for Wireless

Deploying robots in scenarios such as shopping malls for the applications mentioned cannot be done via wired connectivity.

8.4. Requirements for RAW

The network infrastructure needs to support heterogeneous types of traffic, from robot control to video streaming.

When a given service is decomposed into functions -- hosted at different robots -- chained, each link connecting two given functions would have a well-defined set of requirements (latency, bandwidth and jitter) that must be met.

8.4.1. Non-latency critical considerations

This use-case might combine multiple communication flows, with some of them being latency critical (like those related to robot control tasks). Note that there are still many communication flows (like some offloading tasks) that only demand reliability and availability.

9. Emergencies: Instrumented emergency vehicle

9.1. use-case Description

An instrumented ambulance would be one that has a LAN to which are connected these end systems such as:

* vital signs sensors attached to the casualty in the ambulance. Relay medical data to hospital emergency room,

* radio-navigation sensor to relay position data to various destinations including dispatcher,

* voice communication for ambulance attendant (like to consult with ER doctor), and
* voice communication between driver and dispatcher.

The LAN needs to be routed through radio-WANs to complete the inter-network linkage.

9.2. Specifics

What we have today is multiple communications systems to reach the vehicle via:

* A dispatching system,
* a cellphone for the attendant,
* a special purpose telemetering system for medical data,
* etc.

This redundancy of systems, because of its stove-piping, does not contribute to availability.

Most of the scenarios involving the use of an instrumented ambulance are composed of many different flows, each of them with slightly different requirements in terms of reliability and latency. Destinations might be either at the ambulance itself (local traffic), at a near edge cloud or at the general Internet/cloud.

9.3. The Need for Wireless

Local traffic between the first responders/ambulance staff and the ambulance equipment cannot be done via wired connectivity as the responders perform initial treatment outside of the ambulance. The communications from the ambulance to external services must be wireless as well.

9.4. Requirements for RAW

We can derive some pertinent requirements from this scenario:

* High availability of the inter-network is required.

* The inter-network needs to operate in damaged state (e.g. during an earthquake aftermath, heavy weather, wildfire, etc.). In addition to continuity of operations, rapid restore is a needed characteristic.
* E2E security, both authenticity and confidentiality, is required of traffic. All data needs to be authenticated; some like medical needs to be confidential.

* The radio-WAN has characteristics similar to cellphone -- the vehicle will travel from one radio footprint to another.

9.4.1. Non-latency critical considerations

In this case, all applications identified do not require latency critical communication, but do need of high reliability and availability.

10. Summary

This document enumerates several use-cases and applications that need RAW technologies, focusing on the requirements from reliability, availability and latency. Whereas some use-cases are latency-critical, there are also several applications that are non-latency critical, but that do pose strict reliability and availability requirements. Future revisions of this document will include specific text devoted to highlight this non-latency critical requirements.

11. IANA Considerations

This document has no IANA actions.

12. Security Considerations

This document covers several representative applications and network scenarios that are expected to make use of RAW technologies. Each of the potential RAW use-cases will have security considerations from both the use-specific perspective and the RAW technology perspective. [RFC9055] provides a comprehensive discussion of security considerations in the context of Deterministic Networking, which are generally applicable also to RAW.

13. Acknowledgments

Nils Maeurer, Thomas Graeupl and Corinna Schmitt have contributed significantly to this document, providing input for the Aeronautical communications section. Rex Buddenberg has also contributed to the document, providing input to the Emergency: instrumented emergency vehicle section.
The authors would like to thank Toerless Eckert, Xavi Vilajosana Guillen, Rute Sofia and Corinna Schmitt for their valuable comments on previous versions of this document.

The work of Carlos J. Bernardos in this draft has been partially supported by the H2020 5Growth (Grant 856709) and 5G-DIVE projects (Grant 859881), and UNICO 5G I+D 6G-DATADRIVEN-04 project.

14. References

14.1. Normative References

[I-D.ietf-raw-technologies]

14.2. Informative References

[EIP] http://www.odva.org/, "EtherNet/IP provides users with the network tools to deploy standard Ethernet technology (IEEE 802.3 combined with the TCP/IP Suite) for industrial automation applications while enabling Internet and enterprise connectivity data anytime, anywhere.", <http://www.odva.org/Portals/0/Library/Publications_Numbered/PUB00138R3_CIP_Adv_Tech_Series_EtherNetIP.pdf>.

[I-D.ietf-raw-industrial-requirements]
Sofia, R. C., Kovatsch, M., and P. M. Mendes, "Requirements for Reliable Wireless Industrial Services", Work in Progress, Internet-Draft, draft-ietf-raw-

[IEEE80211RTA]

Authors’ Addresses

Carlos J. Bernardos (editor)
Universidad Carlos III de Madrid
Av. Universidad, 30
28911 Leganes, Madrid
Spain
Phone: +34 91624 6236
Email: cjbc@it.uc3m.es
URI: http://www.it.uc3m.es/cjbc/

Georgios Z. Papadopoulos
IMT Atlantique
Office B00 - 114A
2 Rue de la Chataigneraie
35510 Cesson-Sevigne - Rennes
France
Phone: +33 299 12 70 04
Email: georgios.papadopoulos@imt-atlantique.fr

Pascal Thubert
Cisco Systems, Inc
Building D
45 Allee des Ormes – BP1200
06254 MOUGINS - Sophia Antipolis
France
Phone: +33 497 23 26 34
Email: pthubert@cisco.com