Transmission of SCHC-compressed packets over IEEE 802.15.4 networks

draft-gomez-6lo-schc-15dot4-02

Carles Gomez
Universitat Politècnica de Catalunya (UPC)
carlesgo@entel.upc.edu

Ana Minaburo
Acklio
ana@ackl.io

IETF 113 - Vienna, March 2022
Introduction (I/III)

• RFC 6282: the basis for header compression in 6Lo(WPAN)
 • Designed for IEEE 802.15.4 as the target technology
 • Adapted/Reused for relatively similar IoT technologies
 • Compressed IPv6/UDP header size of 7 bytes
 – Best case, with global addresses

• RFC 8724 (aka “SCHC”), a product of the LPWAN WG
 • Adaptation layer functionality:
 – Header compression
 – Fragmentation
 • Designed for even more constrained (LPWAN) technologies

• SCHC header compression
 • Compressed IPv6/UDP header size of e.g. 1 byte
 – Best case, with global addresses
 • Static Context: exploit a priori knowledge of header field values
Introduction (II/III)

• Compressed IPv6/UDP/CoAP header size
 • 6Lo(WPAN) compression:
 – No CoAP header options: \(11\) bytes
 – CoAP header options (Table 6, RFC 8824): \(23\) bytes
 • SCHC compression: e.g. \(2\) bytes

Assumptions:
- Best case
- Global addresses

• Theoretical battery lifetime improvement over IEEE 802.15.4 by a factor up to >2
 • Including a 1-byte SCHC Dispatch
 • Actual improvement will be lower, depending on various parameters and features: device hardware, MAC settings, application settings, payload size, network topology, etc.
Introduction (III/III)

• Maximum battery lifetime improvement factor
 • Short MAC addresses, intra-PAN
 • E.g. a battery-operated sensor that periodically sends a message over IEEE 802.15.4

NOTE: actual improvement will be lower
Status

• Related document: draft-gomez-6lo-schc-dispatch
 • Proposal of a dispatch to signal SCHC HC
 • Presented at IETF 110

• draft-gomez-6lo-schc-15dot4
 • Greater scope
 – Transmission of SCHC-compressed packets over IEEE 802.15.4 networks
 • -00 presented in IETF 111
 • -01 presented in IETF 112

• Revision -02
 • Aims to incorporate the feedback from IETF 112 and LPWAN WG interims
4. Frame format

• Frame format (i.e. L2 frame payload)
 – Encapsulated SCHC compressed packet:

```
<-------- IEEE 802.15.4 frame payload -------->

<---- SCHC Packet ---->
+-----------------------------+---+---+---+---+---+---+---+---+
| SCHC Dispatch | SCHC Header | Payload | Padding |
+-----------------------------+---+---+---+---+---+---+---+---+
```

 – RuleID size:
 • In -01: 8 bits (MUST)
 • In -02: 1-16 bits (RECOMMENDED)
 – Allow an appropriate RuleID size to be used in each deployment
 – Avoid a hard limit on network size and number of endpoint pairs that can benefit from SCHC HC
5.1. IPv6/UDP header compression

• As per Section 10 of RFC 8724
• Problem: IPv6 addresses and UDP ports
 – Dev and App terms (RFC 8724) allow a single Rule to be usable in both directions

LPWAN architecture (RFC 8724):

– In -02: some 802.15.4 scenarios can use this optimization “as is” (e.g., star topology networks)
5.1. IPv6/UDP header compression

• Problem: IPv6 addresses and UDP ports
 – In -02: in some 802.15.4 scenarios (e.g. two peers within a mesh topology), additional functionality (TBD) needed to use Dev and App
 • Each endpoint needs to know whether it is Dev or App when talking to another device
 • Uplink and Downlink have a meaning specific to each pair of endpoints
 – In -02, removed the tentative solution in -01:
 • Using “source” and “destination” in the Rules
 • “Transmit” and “Receive” terms (intended as replacements of Uplink and Downlink)
5.1.1. Compression of IPv6 addresses

- In RFC 8724, AppIID CDA cannot be used on LPWAN technologies that only carry the Dev identifier.
- In -02: in 802.15.4, data frames carry both a source and a destination field, therefore AppIID CDA can be used.
 - If the IID can be reconstructed based on information available at the L2 header.
8. Security considerations

• No header compression functionality beyond the one in RFC 8724
 – Security considerations of Sec. 12.1 (RFC 8724) apply
 – Also, secur. considerations of Sec. 9 (RFC 8824) apply

• 802.15.4 networks support link-layer encryption and authentication
 – As in RFC 8824: cryptographic integrity-protection mechanism REQUIRED to protect SCHC headers
Next steps

• Who is Dev or App, and writing the Rules accordingly
• Do all nodes need to store all the Rules used in the 802.15.4 network?
 – If not, can RuleIDs be reused across disjoint pairs of endpoints?
• Scope of SCHC header compression of IPv6/UDP in peer-to-peer 802.15.4 topologies:
 – One hop between source and destination
 – Several hops between source and destination
 • Mesh under
 • Route over: challenging...
WG adoption?

draft-gomez-6lo-schc-15dot4-02

Carles Gomez
Universitat Politècnica de Catalunya (UPC)
carlesgo@entel.upc.edu

Ana Minaburo
Acklio
ana@ackl.io

IETF 113 - Vienna, March 2022