
IETF 113: ALTO New Protocol (Transport) 1

ALTO New Transport using HTTP/2
draft-schott-alto-new-transport-01

Roland Schott
Y. Richard Yang

Kai Gao
Jensen Zhang

March 23, 2022

IETF 113

IETF 113: ALTO New Protocol (Transport) 2

Outline

• Motivation and requirements

• ALTO/H2 design

• Discussions and open issues

IETF 113: ALTO New Protocol (Transport) 3

Motivation

• ALTO base protocol [RFC7285] is an HTTP/1.x client-pull protocol

• ALTO/SSE [RFC8895] adds incremental server push using Server-Sent-Event,
but is based on HTTP/1.x

– Need additional
control connection

– Updates must be
serialized

• RFC8895 IESG review

– Consider HTTP/2

--

| |

| +-------+ +-------+ 1. init request +------+ |

| | | | | <------------- | | |

| | | | | -------------> | | |

| 3.add/ | | | | 1'. control uri | | |

| remove | | | | | | |

| resource |Stream | |Update | | | |

-------->|Control| private |Stream | 2a. data update |Client| --

|Server |<------->|Server | messages | |

-------- | | | | --------------> | | <-

| response | | | | --------------> | | |

| | | | | 2b.control update| | |

| +-------+ +-------+ messages +------+ |

| |

--

ALTO SSE Example

IETF 113: ALTO New Protocol (Transport) 4

ALTO/H2 Design Requirements
• From ALTO base protocol [RFC 7285]

– R0: Client can request any ALTO resource using the connection, just as using ALTO base protocol using
HTTP/1.x

• From ALTO SSE [RFC 8895]

– R1: Client can request the addition (start) of incremental updates to a resource

– R2: Client can request the deletion (stop) of incremental updates to a resource

– R3: Server can signal to the client the start or stop of incremental updates to a resource

– R4: Server can choose the type of each incremental update encoding, as long as the type is indicated to be
acceptable by the client

• From ALTO base framework [RFC 7285]
– R5: Design follows basic HTTP Representational State Transfer architecture if possible

• Can use only a limited number of verbs (GET, POST, PUT, DELETE, HEAD)

– R6: Design takes advantage of HTTP/2 design features such as parallel transfer and respects HTTP/2 semantics
[PUSH_PROMISE]

• Allow flexible deployment
– R7: Capability negotiation

IETF 113: ALTO New Protocol (Transport) 5

ALTO/H2 Design Requirements addressed by daft
• From ALTO base protocol [RFC 7285]

– R0: Client can request any ALTO resource using the connection, just as using ALTO base protocol using
HTTP/1.x

• From ALTO SSE [RFC 8895]

– R1: Client can request the addition (start) of incremental updates to a resource

– R2: Client can request the deletion (stop) of incremental updates to a resource

– R3: Server can signal to the client the start or stop of incremental updates to a resource

– R4: Server can choose the type of each incremental update encoding, as long as the type is indicated to be
acceptable by the client

• From ALTO base framework [RFC 7285]
– R5: Design follows basic HTTP Representational State Transfer architecture if possible

• Can use only a limited number of verbs (GET, POST, PUT, DELETE, HEAD)

– R6: Design takes advantage of HTTP/2 design features such as parallel transfer and respects HTTP/2 semantics
[PUSH_PROMISE]

• Allow flexible deployment
– R7: Capability negotiation

IETF 113: ALTO New Protocol (Transport) 6

Outline

• Motivation and requirements

• ALTO/H2 design

– Overview

IETF 113: ALTO New Protocol (Transport) 7

ALTO/H2 Transport Information Structure
ALTO

Server

Information

resource

Transport

queue

Incremental

updates

queue

Receiver

set

New

Idea

Existing

Client 1 Client 2 Client 3
Clients

Static resource

such as

NetworkMap

Filterable resource

such as

FilteredCostMap

tq1

tq1/uq

tq2 tq3

ir1

tq1/rs

A single HTTP/2

connection between

each client and the server

Adapt ALTO SSE to HTTP/2:

Single HTTP connection

between Server and client

Single HTTP/2 connection

ir2

IETF 113: ALTO New Protocol (Transport) 8

ALTO/H2 Transport Information Structure

• Client opens a connection to the server

• Client opens/identifies a transport queue tq

– Client requests transport queue status

– Client requests an element in the message queue

– Client becomes a receiver

– Client receives push updates

• Client closes the transport queue

• Client closes connection

IETF 113: ALTO New Protocol (Transport) 9

Outline

• Motivation and requirements

• ALTO/H2 design

– Overview

– Transport queue

IETF 113: ALTO New Protocol (Transport) 10

Transport Queue
• Basic operations (CRUD): create, read (get status), delete

• Client creates transport queue
– POST to transport queues path

• Request reuses ALTO/SSE input

– HTTP :method=post with
AddUpdateReq [RFC8895]

• Response

– <transport-queue>

IETF 113: ALTO New Protocol (Transport) 11

Transport Queue Example (Create)

• Client -> Server request • Server -> Client response

IETF 113: ALTO New Protocol (Transport) 12

Transport Queue
• Basic operations (CRUD): create, read (get status), delete

• Client creates transport queue
– POST to transport queues path

• Request reuses ALTO/SSE input

– HTTP :method=post with
AddUpdateReq [RFC8895]

• Response

– <transport-queue>

• Client reads transport queue: GET <transport-queue>

• Client closes transport queue:
– Explicit: DELETE <transport-queue>

• Delete from local view (server may still maintain the transport queue for other client connections)

– Implicit: Transport queue for a client is ephemeral: close of connection or stream deletes the transport
queue from the client’s view --- when the client reconnects, the client MUST NOT assume that the queue is
still valid

IETF 113: ALTO New Protocol (Transport) 13

Transport Queue Example (Read)

• Client -> Server request • Server -> Client response

„uq“ = incremental updates queue

„rs“ = receiver set

IETF 113: ALTO New Protocol (Transport) 14

Outline

• Motivation and requirements

• ALTO/H2 design

– Overview

– Transport queue

– Incremental updates queue

IETF 113: ALTO New Protocol (Transport) 15

• Incremental updates queue basic operations (CRUD): read (get status)
– Client cannot create, update, or delete incremental updates queue directly---it is read only, and

associated with transport queue automatically

– Read:

• Input: <tq>/uq

• Response: updates queue state

• Note

– Server determines the state
(window of history and type
of each update) in the update
queue [R4]

– Read of updates queue status
allows client to know

» backlog status

» workload to catch up (HEAD)

» potential direct link

Incremental Updates Queue

Request

Response data

IETF 113: ALTO New Protocol (Transport) 16

Outline

• Motivation and requirements

• ALTO/H2 design

– Overview

– Transport queue

– Incremental updates queue

– Individual updates

IETF 113: ALTO New Protocol (Transport) 17

Individual Incremental Updates
• Individual incremental updates operations (CRUD): pull read or push read

– Client pull

• GET <update-uri>

IETF 113: ALTO New Protocol (Transport) 18

Client Pull Example

IETF 113: ALTO New Protocol (Transport) 19

Individual Incremental Updates
• Individual incremental updates operations (CRUD): pull read or push read

– Client pull

• GET <update-uri>

– Server push

• Initialization:

– the first update pushed from the server to the client MUST be the later of the following two

» the last independent update in the incremental updates queue

» the following entry of the entry that matches the tag when the client creates the
transport queue

– The client MUST set SETTINGS_ENABLE_PUSH to be consistent

• State: the server maintains the last entry pushed to the client and schedules next update push

– Per client, connection state

• Client MUST NOT cancel (RST_STREAM) a PUSH_PROMISE

– To avoid complex server state management

IETF 113: ALTO New Protocol (Transport) 20

Server Push Initialization Example

First push, if

client has no matching

tag

First push, if

client has tag

matching

previous entry

IETF 113: ALTO New Protocol (Transport) 21

Server Push Transport Example

• Each pushed update is indicated first in a PUSH_PROMISE

Server send PUSH_PROMISE

IETF 113: ALTO New Protocol (Transport) 22

Outline

• Motivation and requirements

• ALTO/H2 design

– Overview

– Transport queue

– Incremental updates queue

– Individual updates

– Receiver set

IETF 113: ALTO New Protocol (Transport) 23

Receiver Set

• Receiver set operations (CRUD): read (get status), delete (self only)

• By default, a client can see only itself in the receiver set

– Appearance of self in the receiver set (read does not return “not exists”) is
an indication that push starts

• A client can delete itself (stops receiving push):
– Explicit: DELETE <transport-queue>/rs/self

– Implicit: Transport queue is connection ephemeral: close of connection or stream for the transport queue deletes
the transport queue (from the view) for the client

IETF 113: ALTO New Protocol (Transport) 24

Outline

• Motivation and requirements

• ALTO/H2 design

– Overview

– Transport queue

– Incremental updates queue

– Individual updates

– Receiver set

– Stream management

IETF 113: ALTO New Protocol (Transport) 25

ALTO/H2 Stream Management: Objectives

• Objectives

– Allow stream concurrency to reduce latency

– Minimize the number of streams created

– Enforce dependency among streams (so that if A depends on B, then A
should be sent before B)

• Encode dependency to enforce semantics (correctness)

IETF 113: ALTO New Protocol (Transport) 26

ALTO/H2 Stream Management: Specification

• Client -> Server [Create transport queue]

– Each request to create a transport queue (POST) MUST choose a new client
selected stream ID (SID_tq)

• Stream Identifier of the frame is a new client-selected stream ID; Stream
Dependency in HEADERS is 0 (connection) for an independent resource,
the other transport queue if the dependency is known

• Invariant: Stream keeps open until close or error

IETF 113: ALTO New Protocol (Transport) 27

ALTO/H2 Stream Management: Specification

• Client -> Server [Close transport queue]

– DELETE to close a transport queue (SID_tq) MUST be sent in SID_tq

• Stream Identifier of the frame is SID_tq; Stream Dependency in HEADER
is 0 (connection)

– So that a client cannot close a different stream

– Indicates END_STREAM; server response also close stream

IETF 113: ALTO New Protocol (Transport) 28

ALTO/H2 Stream Management: Specification

• Client -> Server [Request on data of a transport queue SID_tq, e.g.,
read message]

– Stream Identifier of the frame is a new client-selected stream ID, Stream
Dependency in HEADERs MUST be SID_tq

• So that a client cannot issue request on a closed transport queue

• Request indicates END_STREAM; response also indicates end of stream

IETF 113: ALTO New Protocol (Transport) 29

ALTO/H2 Stream Management: Specification

• Server -> Client PUSH_PROMISE for transport queue SID_tq

– PUSH_PROMISE sent in stream SID_tq to serialize to allow the client to
know the push order

– Each PUSH_PROMISE chooses a new server-selected stream ID

• Stream is closed after push

IETF 113: ALTO New Protocol (Transport) 30

Concurrent Streams Management

• Controlled by SETTINGS_MAX_CONCURRENT_STREAMS

• Client -> Server

– There is one stream for each open transport queue

• A client can always close a transport queue (it uses the open stream)
and hence can open -> can close, without issue of deadlock

• Server -> Client push

– Each push needs to open a new stream

IETF 113: ALTO New Protocol (Transport) 31

Outline

• Motivation and requirements

• ALTO/H2 design

– Overview

– Transport queue

– Incremental updates queue

– Individual updates

– Receiver set

– Stream management

• Discussions and open issues

IETF 113: ALTO New Protocol (Transport) 32

Transport and Pub/sub

• What is missing

– The design does not allow creation of generic message queues

– Only the server can be the publisher

• Clients cannot publish info to be shared with other clients

– The design does not have the capability of Exchange (message router)

• Way forward: Keep simple

– Broker for further discussion

https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf

IETF 113: ALTO New Protocol (Transport) 33

Capability Negotiation

• Capability Negotiation is not fully specified

– Instead of fix stream management, client server can negotiate

IETF 113: ALTO New Protocol (Transport) 34

Additional Information about Transport Queue

• Calendar semantics

– Tell the client ALTO information (e.g., cost) for a future time point

– Tell the client when the next information will be released, it is the time
that the info is released is distributed, not the value [support]

IETF 113: ALTO New Protocol (Transport) 35

Thank you!

Questions?

