- 0090.0-+-

i1 E T F
ALTO New Transport using HTTP/2

draft-schott-alto-new-transport-01

Roland Schott
Y. Richard Yang
Kai Gao
Jensen Zhang

March 23, 2022

IETF 113

IETF 113: ALTO New Protocol (Transport)

Outline

* Motivation and requirements
* ALTO/H2 design
* Discussions and open issues

IETF 113: ALTO New Protocol (Transport)

Motivation

e ALTO base protocol [RFC7285] is an HTTP/1.x client-pull protocol

 ALTO/SSE [RFC8895] adds incremental server push using Server-Sent-Event,
but is based on HTTP/1.x

— Need additional
control connection

— Updates must be
serialized

e RFC8895 IESG review
— Consider HTTP/2

t-—————= + tomm———= + 1. init request +------ +

| | | | < | |

| | | | mmmmm e > |
3.add/ | | | | 1'. control uri | |
remove | | | | | |
resource |Stream | | Update | | |
———————— >|Control| private |Stream | 2a. data update |Client]| --

| Server |<-—-————--—- >|Server | messages | |
———————— | | | | > | <=
response | | | | - > |

| | | | 2b.control update]| |

f—————— + F—————— + messages - +

IETF 113: ALTO New Protocol (Transport) 3

ALTO/H2 Design Requirements

From ALTO base protocol [RFC 7285]

RO: Client can request any ALTO resource using the connection, just as using ALTO base protocol using
HTTP/1.x

From ALTO SSE [RFC 8895]

R1: Client can request the addition (start) of incremental updates to a resource
R2: Client can request the deletion (stop) of incremental updates to a resource
R3: Server can signal to the client the start or stop of incremental updates to a resource

R4: Server can choose the type of each incremental update encoding, as long as the type is indicated to be
acceptable by the client

From ALTO base framework [RFC 7285]

R5: Design follows basic HTTP Representational State Transfer architecture if possible
e Can use only a limited number of verbs (GET, POST, PUT, DELETE, HEAD)

R6: Design takes advantage of HTTP/2 design features such as parallel transfer and respects HTTP/2 semantics
[PUSH_PROMISE]

Allow flexible deployment

R7: Capability negotiation

IETF 113: ALTO New Protocol (Transport)

ALTO/H2 Design Requirements addressed by daft

e From ALTO base protocol [RFC 7285]

— RO: Client can request any ALTO resource using the connection, just as using ALTO base protocol using
HTTP/1.x

* From ALTO SSE [RFC 8895] Vv
— R1: Client can request the addition (start) of incremental updates to a resource
— R2: Client can request the deletion (stop) of incremental updates to a resource
— R3: Server can signal to the client the start or stop of incremental updates to a resource
— R4: Server can choose the type of each incremental update encoding, as long as the type is indicated to be
acceptable by the client
* From ALTO base framework [RFC 7285] v/
— R5: Design follows basic HTTP Representational State Transfer architecture if possible
e Can use only a limited number of verbs (GET, POST, PUT, DELETE, HEAD)

— R6: Design takes advantage of HTTP/2 design features such as parallel transfer and respects HTTP/2 semantics
[PUSH_PROMISE]

e Allow flexible deployment @
— R7: Capability negotiation

IETF 113: ALTO New Protocol (Transport)

Outline

* Motivation and requirements
* ALTO/H2 design

— QOverview

IETF 113: ALTO New Protocol (Transport)

ALTO/H2 Transport Information Structure

NetworkMap

Filterable resource

irl ir2 such as
Informatlon FiIteredCostMap
resource
___ Existing
New
Transport tq tq3 ldea
gqueue
tql/u
4/ug tql/rs
Incremental Adapt ALTO SSE to HTTP/2:
updates Receiver Single HTTP connection
gueue - between Server and client

‘ N ol A single HTTP/2
sinelg FNCTP/Z conigstgciion connection between

Clients @ @ each client and the server

IETF 113: ALTO New Protocol (Transport) 7

ALTO/H2 Transport Information Structure

Client opens a connection to the server

Client opens/identifies a transport queue tq
— Client requests transport queue status

— Client requests an element in the message queue
— Client becomes a receiver

— Client receives push updates
Client closes the transport queue
Client closes connection

IETF 113: ALTO New Protocol (Transport)

Outline

* Motivation and requirements
* ALTO/H2 design

— Overview
— Transport queue

IETF 113: ALTO New Protocol (Transport)

Transport Queue

* Basic operations (CRUD): create, read (get status), delete

e Client creates transport queue
— POST to transport queues path

object {
e Request reuses ALTO/SSE input ResourceID
— HTTP :method=post with [JSONString
[Boolean
AddUpdateReq [RFC8895] [Object
e Response } AddUpdateReq;

— <transport-queue>

resource-id;

tag;]
incremental-changes;]
input;]

IETF 113: ALTO New Protocol (Transport)

10

Transport Queue Example (Create)

e Client -> Server request

HEADERS

— END_STREAM

+ END_HEADERS
:method = POST
:scheme = https
:path = /tgs
host = alto.example.com
accept = application/alto—-error+json,

application/alto-transport+json

content—-type = application/alto-transport+json
content-1length = TBD

DATA
— END_STREAM
{

by

"resource-id": "my-routingcost-map"

* Server -> Client response

HEADERS
— END_STREAM
+ END_HEADERS
:status = 200
content-type = application/alto-transport+json
content-1length = TBD

DATA
— END_STREAM
{"tq": "/tqs/2718281828459"}

IETF 113: ALTO New Protocol (Transport)

11

Transport Queue

* Basic operations (CRUD): create, read (get status), delete

* Client creates transport queue

— POST to transport queues path object {

e Request reuses ALTO/SSE input ResourceID resource-id;
_) _ . [JSONString tag;]
HTTP :method=post with [Boolean incremental-changes;]
AddUpdateReq [RFC8895] [Object input;]
e Response } AddUpdateReq;

— <transport-queue>
e Client reads transport queue: GET <transport-queue>

* Client closes transport queue:
— Explicit: DELETE <transport-queue>

e Delete from local view (server may still maintain the transport queue for other client connections)

— Implicit: Transport queue for a client is ephemeral: close of connection or stream deletes the transport

queue from the client’s view --- when the client reconnects, the client MUST NOT assume that the queue is
still valid

IETF 113: ALTO New Protocol (Transport) 12

Transport Queue Example (Read)

e Client -> Server request

* Server -> Client response

HEADERS

— END_STREAM

+ END_HEADERS
:method = GET
:scheme = https
:path = /tqs/2718281828459
host = alto.example.com
accept = application/alto-error+json,

application/alto-transport+json

,ug“ = incremental updates queue

Js" =receiver set

HEADERS
— END_STREAM
+ END_HEADERS
:status = 200
content-type =
content-length

DATA
— END_STREAM
{ Iluqll:
[
{"Seq":

a

"media-type":

Il.tagll:
{Ilseqll:

"media-type":

Il.tagll:
{"Seq":

"media-type":

Ilrsll: ["Se.l.f"]

}

pplication/alto-transport+json
TBD

101,

"application/alto-costmap+json",
"al0ce8b059740b0b2e3f8eb1d4785acd42231bfe" },
le2,

"application/merge-patch+json",
"cdf@222x59740b0b2e3f8eb1ld4785acd42231bfe" 1},
103,

"application/merge-patch+json",
"8ebld4785acd42231bfecdf@222x59740b0b2e3f",
"/tqs/2718281828459/snapshot/2e3f"}

IETF 113: ALTO New Protocol (Transport)

13

Outline

* Motivation and requirements
* ALTO/H2 design

— Overview
— Transport queue
— Incremental updates queue

IETF 113: ALTO New Protocol (Transport)

14

Incremental Updates Queue

* Incremental updates queue basic operations (ERYUB): read (get status)
— Client cannot create, update, or delete incremental updates queue directly---it is read only, and

associated with transport queue automatically

HEADERS

Read:
e Input: <tg>/uq

— END_STREAM
+ END_HEADERS
:method = G

Request
ET

e Response: updates queue state
e Note

— Server determines the state
(window of history and type
of each update) in the update
queue [R4]

— Read of updates queue status
allows client to know

» backlog status
» workload to catch up (HEAD)
» potential direct link

:scheme = https

:path = /tqs/2718281828459/uq

host = alto.example.com
accept = application/alto-error+json,
application/alto-transport+json
DATA
— END_STREAM
{
[
{"seq": 101,
"media-type": "application/alto-costmap+json",
"tag": "al0ce8b059740b0b2e3f8ebld4785acd42231bfe" },
{"seq": 102,
"media-type": "application/merge-patch+json",
"tag": "cdf0222x59740b0b2e3f8eb1d4785acd42231bfe" },
{"seq": 103,
"media-type": "application/merge-patch+json",
"tag" "8eb1d4785acd42231hfecdf@222x59740hPb2e3f",
"link" "/tqs/2718281828459/snapshot/2e3f"}
1, Response data
}

IETF 113: ALTO New Protocol (Transport)

15

Outline

* Motivation and requirements
* ALTO/H2 design

— Overview

— Transport queue

— Incremental updates queue
— Individual updates

IETF 113: ALTO New Protocol (Transport)

16

Individual Incremental Updates

* Individual incremental updates operations (ERUYB): pull read or push read
— Client pull
e GET <update-uri>

IETF 113: ALTO New Protocol (Transport)

17

Client Pull Example

HEADERS
- END_STREAM
+ END_HEADERS
istatus = 200
content-type = application/alto-costmap+json
content-length = TBD
DATA
+ END_STREAM
{
HEADERS "meta" : {
+ END_STREAM "dependent-vtags" : [{
+ END HEADERS "resource-id": "my-network-map",
-method = GET "tag": "da65eca2eb7al@ce8b@59740b0b2e3f8eb1d4785"
:scheme = https "iiét type" : {
:path = /tqs/2718281828459/uq/101 "cost-mode" : "numerical”,
host = alto.e*ampye.com . "cost-metric": "routingcost”
accept = application/alto-error+json, },
application/alto-costmap+json "vtag": {
"resource-id" : "my-routingcost-map",
"tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
}
},
"cost-map" : {
"pID1": { "PID1": 1, "PID2": 5, "PID3": 10 },
"p1p2": { "PID1": 5, "PID2": 1, "PID3": 15 },
"PID3": { "PID1": 20, "PID2": 15 }
}
}

IETF 113: ALTO New Protocol (Transport)

18

Individual Incremental Updates

* Individual incremental updates operations (ERUYB): pull read or push read
— Client pull
e GET <update-uri>
— Server push
e |nitialization:
— the first update pushed from the server to the client MUST be the later of the following two
» the last independent update in the incremental updates queue

» the following entry of the entry that matches the tag when the client creates the
transport queue

— The client MUST set SETTINGS_ENABLE_PUSH to be consistent

e State: the server maintains the last entry pushed to the client and schedules next update push
— Per client, connection state

e Client MUST NOT cancel (RST_STREAM) a PUSH_PROMISE

— To avoid complex server state management

IETF 113: ALTO New Protocol (Transport)

19

Server Push Initialization Example

DATA
+ END_STREAM
{
[
{Ilseqll:

"media-type":

"media-type":

Il.tagll:
{Ilseqll:

"media-type":

"‘tag":
"link":

1,

101,*""""—f/’//—’/’ﬂfafffﬂffffﬂfffﬂffﬂffﬂﬂ

"application/alto-costmap+json",
"al0ce8b059740b0b2e3f8eb1d4785acd42231bfe" },
102,

| First push, if
client has no matching
tag

1
!

"application/merge-patch+json
"cdf0222x59740b0b2e3f8eb1d4785acd42231bfe" },
103,

"application/merge-patch+json",
"8ebld4785acd42231bfecdf0222x59740b0b2e3 ",
"/tqs/2718281828459/snapshot/2e3f"}

First push, if
client has tag
matching

previous entry

IETF 113: ALTO New Protocol (Transport)

20

Server Push Transport Example

Server send PUSH_PROMISE

* Each pushed update is indicated first in a PUSH_PROMISE

Server -> client PUSH _PROMISE in stream 3

PUSH_PROMISE
— END_STREAM

Promised Stream 4

HEADER BLOCK

:method = GET

:scheme = https

:pseudopath = /tqs/2718281828459/uq/101

host = alto.example.com

accept = application/alto-error+json,
application/alto-costmap+json

Server —> client content Stream 4

HEADERS
+ END_STREAM

content-type

= application/alto-costmap+json
content-length =

TBD

DATA
+ END_STREAM
{
"meta" : {
"dependent-vtags" : [{
"resource-id": "my-network-map",
"tag": "dabSeca2eb7al@ce8b059740b0b2e3f8eb1d4785"
}H,
"cost-type" : {
"cost-mode" : "numerical",
"cost-metric": "routingcost"
H
"vtag": {
"resource-id" : "my-routingcost-map",
"tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
}
b
"cost-map" : {
"pID1": { "PID1": 1, "PID2": 5, "PID3": 10 },
"pID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
"PID3": { "PID1": 20, "PID2": 15 }
}

IETF 113: ALTO New Protocol (Transport)

21

Outline

* Motivation and requirements
* ALTO/H2 design

— Overview

— Transport queue

— Incremental updates queue
— Individual updates

— Receiver set

IETF 113: ALTO New Protocol (Transport)

22

Receiver Set

* Receiver set operations (ERUYD): read (get status), delete (self only)
* By default, a client can see only itself in the receiver set

— Appearance of self in the receiver set (read does not return “not exists”) is
an indication that push starts

* A client can delete itself (stops receiving push):

— Explicit: DELETE <transport-queue>/rs/self

— Implicit: Transport queue is connection ephemeral: close of connection or stream for the transport queue deletes
the transport queue (from the view) for the client

IETF 113: ALTO New Protocol (Transport)

23

Outline

* Motivation and requirements
* ALTO/H2 design

— Overview

— Transport queue

— Incremental updates queue
— Individual updates

— Receiver set

— Stream management

IETF 113: ALTO New Protocol (Transport)

24

ALTO/H2 Stream Management: Objectives

* Objectives
— Allow stream concurrency to reduce latency
— Minimize the number of streams created

— Enforce dependency among streams (so that if A depends on B, then A
should be sent before B)

e Encode dependency to enforce semantics (correctness)

IETF 113: ALTO New Protocol (Transport)

25

ALTO/H2 Stream Management: Specification

* Client -> Server [Create transport queue]

— Each request to create a transport queue (POST) MUST choose a new client
selected stream ID (SID_tq)

e Stream ldentifier/of the frame is a new client-selected stream ID; Stream
Dependency in HEADERS is O-(connection) for an independent resource,

the other transport queue if the
e [nvariant: Stream keeps open until clo

O +

| Length (24) |
S S S +

| Type (8) | Flags (8)

S S A Sy +
|R| Stream Identifier (31)
t=f================s==== == ============= =======+

Figure 1: Frame Layout

endency is known

or error

I U

S S +
|E| Stream Dependency? (31)

L S +
| Weight? (8) |

S e +
| Header Block Fragment (*) ..
e +
| Padding (*) ..
e +

Figure 7: HEADERS Frame Payload

IETF 113: ALTO New Protocol (Transport)

26

ALTO/H2 Stream Management: Specification

e Client -> Server [Close transport queue]
— DELETE to close a transport queue (SID_tg) MUST be sent in SID_tqg

e Stream ldentifier of the frame is

is O (connection)

—So that a client cannot close a different stream

—Indicates END_STREAM; server response also close stream

Figure 1: Frame Layout

Figure 7: HEADERS Frame Payload

ID_tq; Stream Dependency in HEADER

S +

|Pad Length? (8)]

S S +
|E| Stream Dependency? (31)

L S +
| Weight? (8) |

S e +
| Header Block Fragment (*) ..
e +
| Padding (*) ..
e +

IETF 113: ALTO New Protocol (Transport)

27

ALTO/H2 Stream Management: Specification

* Client -> Server [Request on data of a transport queue SID tq, e.g.,
read message]

— Stream Identifier of the frame is a new client-selected stream ID, Stream
Dependency in HEADERs MUST be SID_tq

e So that a client cannot issue request
e Request indicates END_STREA

a closed transport queue

“response also indicates end of stream

L ——

| Length (24)

Fe Fm o + Fetmm—— Fmm— e g ————— +

| Type (8) | Flags (8) | I T ey) :

ot o T'T ““““““““““““““ + | wWeight? (8) |

IR| Stream Identifier (31) oo e +

4= == s === == | Header Block Fragment (*) e

| Frame Payload (0 cee) “ee +_______________________________T _______________________________ +

e e + | Padding (*) .
Femm e ———————————— +

Figure 1: Frame Layout Figure 7: HEADERS Frame Payload

IETF 113: ALTO New Protocol (Transport) 28

ALTO/H2 Stream Management: Specification

e Server -> Client PUSH_PROMISE for transport queue SID tq

— PUSH_PROMISE sent in stream S|
know the push order

_tq to serialize to allow the client to

— Each PUSH_PROMISE chooses’a new server-selected stream ID
e Stream is closed after push

e +

| Length (24)

S S . R A +

| Type (8) | Flags (8) |

S Fom S -
|R| Stream Identifier (31)
+=f===================== == ============= ==

| Frame Payload (0...)

o -

Figure 11: PUSH_PROMISE Payload Format

Figure 1: Frame Layout

IETF 113: ALTO New Protocol (Transport) 29

Concurrent Streams Management

* Controlled by SETTINGS MAX_CONCURRENT_STREAMS
* Client -> Server

— There is one stream for each open transport queue

e A client can always close a transport queue (it uses the open stream)
and hence can open -> can close, without issue of deadlock

* Server -> Client push
— Each push needs to open a new stream

IETF 113: ALTO New Protocol (Transport)

30

Outline

* Motivation and requirements
* ALTO/H2 design

— Overview

— Transport queue

— Incremental updates queue
— Individual updates

— Receiver set

— Stream management

* Discussions and open issues

IETF 113: ALTO New Protocol (Transport)

31

Transport and Pub/sub

* What is missing
— The design does not allow creation of generic message queues
— Only the server can be the publisher
e Clients cannot publish info to be shared with other clients
— The design does not have the capability of Exchange (message router)

» Way forward: Keep simple e —

\ o +

— Broker for further discussion e T
T

} : Mess‘age }

\ | Queue |

o 1+ | | e 1t |

| Consumer | €mmmmmm==== tm————— A |

| application | | | - + \

fmmm - + \ | tmm————— + |

\ o +

IETF 113: ALTO New Protocol (Transport)

32

Capability Negotiation

* Capability Negotiation is not fully specified

— Instead of fix stream management, client server can negotiate

IETF 113: ALTO New Protocol (Transport)

33

Additional Information about Transport Queue

e Calendar semantics

— Tell the client ALTO information (e.g., cost) for a future time point

— Tell the client when the next information will be released, it is the time
that the info is released is distributed, not the value [support]

IETF 113: ALTO New Protocol (Transport)

34

Thank youl!

Questions?

IETF 113: ALTO New Protocol (Transport)

35

