ANIMA DNS-SD compatible services auto configuration

draft-eckert-anima-grasp-dnssd-03
draft-eckert-anima-services-dns-autoconfig-01

IETF112 November 2021

Toerless Eckert (Futurewei USA), tte@cs.fau.de
Mohamed Boucadair, mohamed.boucadair@orange.com
Christian Jacquenet, christian.jacquenet@orange.com
Michael H. Behringer, michael.h.behringer@gmail.com
Summary

- Refresher
- Documents quite stable
 - Content/functionality, not necessarily text quality
- Please read the documents
Autonomic Networks..

BRSKI is autonomic (we hope... 0-touch.. except power/ethernet-cable)
 But what if anything goes wrong.. troubleshooting?

How about ACP? “booted automatically after BRSKI”
 First/most-simple Use-case: ACP for connectivity from NOC/SDN RFC8366

From experience with pre-standard ACP implementation:
Need a few infrastructure services to run
 To successfully bring up BRSKI and ACP (troubleshoot)
 For secure use of ACP by NOC(operator) / SDN-controller
Core ANI infrastructure services

Syslog to appropriate servers (in some NOC) across ACP
- Most fundamental troubleshooting tool
- For BRSKI/ACP itself (BRSKI-proxy)
- Also syslog from BRSKI registrar to notify of successful enrolment
- ACP nodes “just” need to learn which syslog server(s) to log to

Clock synchronization (to some NTP servers) across ACP
- Even just for basic crypto/certificate validation
- Tracing of event propagation (syslog originator timestamps, msec resolution)
- ACP nodes “just” need to learn about NTP server(s) to sync to
Core ANI infrastructure services

Remotely access ACP nodes via ACP (manually, from SDN controller)
 • SSH via ACP (controller use netconf via SSH)
 • Authenticate SSH login (username/credential) via Radius (or alternative)
 • Need to learn Radius server to use via ACP

Alternative/additional: New ACP nodes connect Netconf server via ACP
 • Netconf Call-home model
 • Need to learn ACP call-home server via ACP

Convenience ? Necessary ? Auto-enable DNS across ACP
 • Manual CLI operator actions (to eliminate need to know IPv6 addresses)
 • More and more router functions also want DNS ?!
 • Need to learn DNS server to use via ACP
Operator sets up servers in NOC – MUST SUPPORT IPv6

- Syslog, NTP, DNS, Radius/(Diameter/...), Netconf
- And connects them to ACP (e.g.: ACP-connect LAN interface in NOC)
- Nothing yet happens!

- Operator enables service announcements for ACP
 - Configured servers could just announce DNS-SD
 - Or the service announcement is feature on ACP-connect router
 - Now all ACP nodes auto-start their syslog, NTP, DNS, radius, Network “agents” – and the ACP network is fully “manageable/useable”
 - IMHO most crucial: whenever ANI network grows (troubleshoot enrolment BRSKI/ACP and any other following initial, automated steps)
 - All services optional to enable by operator – only what's announced will run!
How to announce services/server across ACP

We have and want GRASP across ACP
 • But we do not want to reinvent the wheel

DNS-SD has defined most of what we need
 • Services names with IANA registry
 • Service instance names, selection parameters (priority, weight, additional TXT params)
 • None of these service aspects are specific to DNS
 • They just have been defined encoded into DNS only so far
 (probably there was a Localtalk encoding in Apple in before ?)
Great! How does it work?

- draft-eckert-anima-grasp-dnssd
- In DNS data for a single service is split across 4++ messages (“Resource Records”)
 - AAAA, CNAME, PTR, SRV, TXT, ...
- Unicast DNS discovering service requires multiple round-trips (when no cache)
- mDNS somewhat better, but still request/reply round-trips involved
- In GRASP, all service instance parameters are just one GRASP objective message
 - Can easily add standard/custom parameters as well.
 - If Objective name is SRV.<name>, then <name> must be an IANA registered service name. Aka: reuse existing registry!

```
[M_FLOOD, 12340815,
 h'fd89b714f3db0000200000064000001', 210000,
 ["SRV.syslog", 4, 255,
  { rfcXXX: {
   &sender-loop-count:1 => 255,
   &srv-element:2 => {
     &msg-type:1 => &describe: 0,
     &service:2 => "syslog",
     &instance:3 => "east-coast-primary",
     &priority:5 => 0,
     &weight:6 => 65535,
     &kvpairs:7 => { "replicate" => 2 },
     &range:8 => 2,
   }
  }
 }]
[O_IPv6_LOCATOR,
 h'fd89b714f3db0000200000064000001', TLS12, 514]
```
Operationalizing/Using GRASP/DNS-SD

Ideal ?!

- Introduce application API for these service announcement/discoveries
 - Maybe draft can include suggested/minimum abstract API?
- API Library can then use GRASP and/or DNS-SD/Unicast/mDNS as it chooses
 - Could be automatic. If ACP discovered, use GRASP, else DNS-SD/mDNS

On ACP router

- Simple announcer for services (configured)
- GRASP/DNS-SD ↔ mDNS gateway function (ACP-connect interface router)

MUST use this objective format.. (suggested requirements)

- ...when using a SRV.<name> objective name
- ...when wanting the objective to go across a GRASP/mDNS gateway
Summary

• draft-eckert-anima-grasp-dnssd-03
 • Specification for DNS-SD service compatible GRASP objectives
 • Recommended for ANY applicable service(instance announcements
 • E.g.: any new ASAs announcing service instances
 • Use SRV.name (and register name in services registry) when service should be compatible with mDNS/unicast-DNS
 • Use any desired objective name when meant to be used only across GRASP (and register in standard GRASP objective name registry)

• draft-eckert-anima-services-dns-autoconfig
 • Definition of core ANI infrastructure services ASA
 • Syslog, NTP, SSHd, Netconf-call-home, DNS-resolver, radius-authentication-client
 • Each activated by discovery of server instances
 • Goal is to create most simple fully-autonomic ANI to support RFC8366 (SDN, legacy “CLI”) style management.
 • Can be a template for similar pragmatic/incremental “automation” ASA
Ask

• Would like to see adoption call for these two drafts