Secure EVPN MAC Signaling

draft-thubert-bess-secure-evpn-mac-signaling

Pascal Thubert, Tony Przygienda, and Jeff Tantsura

IETF 113

Remote
IPv6 IS Different

• DHCP is observable and stateful
 => DHCP addresses have a deterministic beginning and a lifetime
 => Corporate Network admins trust that state
 => A solid foundation for EVPN
The Hassle is the “SL” in SLAAC

• SLAAC stands for IPv6 Stateless Address Autoconfiguration

=> SLAAC address lifecycle is insecure and not deterministically observable

=> There is no protocol to sync SLAAC state with the network (just snooping)

=> Non-deterministic state in EVPN leads to stale state and BUM
Issues with IPv6 ND SLAAC (Non-Deterministic snooping)

- Snooping SLAAC is unreliable, causes silent nodes and stale state
- SLAAC prone to attacks (DDOS, address theft, SAVI)
- SLAAC lacks mobility signaling
- L2 broadcast domain must remain congruent with L3 constructs

NS Lookup for Silent node causes broadcast ND in overlay (BUM)

- Issues with IPv6 ND SLAAC (Non-Deterministic snooping)
 - IP Links
 - L2 broadcast Domain (segment)
 - L3 Subnet (in overlay)
Till we made IPv6 ND stateful

- RFC 8505 / RFC 8928 Stateful Address Autoconfiguration
 => Synchronizes addressing state with network
 => Carries address control semantics (lifetime negotiation, redistribution...)
 => Secures address ownership, enables Source Address Validation
Secure EVPN
MAC signaling

• Redistributing RFC 8505 / RFC 8928 in EVPN
 ⇒ Sorts duplication vs. anycast; can support multicast, too
 ⇒ Handles mobility with sequencing
 ⇒ protects address ownership
Stateful IPv6 ND: Creates a deterministic state for routing

1) Node autoconfigures an IPv6 address
2) Node Registers the IPv6 address NS(EARO) unicast
3) Router checks ownership, policy, mobility sequence, duplicate and acks NA(EARO, ok/~ok)
4) Routers redistributes SFAAC in routing
5) Routing (eVPN) distributes state in all Routers

L2 broadcast Domain irrelevant
P2P IP Links

L3 Subnet (in overlay)
RFC 8928 flow

Direct L2 connection, IP Link == P2P

RFC 8505 / RFC 8928

NS (EARO(ROVR=Crypto-ID, "R" set))

NA (EARO(status=Validation Requested), Nonce)

NS (ROVR, EARO("R" set)), CIPO*, Nonce and NDPSO**)

NA (EARO(status=0, "R" set))

* Crypto-ID Parameters Option
** NDP Signature Option

Check eVPN state:
- Is address already known?
- If so, was it signed with RFC 8928?
- Same vs. Different ROVR?
- If diff: duplicate address
- If same force challenge

Add new NLRI:
- TID, Lifetime
- Signed with RFC 8928

Inject in BGP
Stable

⇒ Inherits from RFC 8929 (ND proxy), RFC 9010 (RPL), and RIFT
⇒ Published 03, with Jorge’s comments using ARP/ND Extended Community
⇒ Calling for adoption