
A dual-PRF construction
Nimrod Aviram, Benjamin Dowling, Ilan Komargodski,

Kenny Paterson, Eyal Ronen, Eylon Yogev

Modern Protocols in a nutshell
Client Server

Transcript

Shared Key

KDF

KeyTranscript

Symmetric Keys

Modern Protocols in a nutshell
Client Server

Transcript

Shared Key

KDF

KeyTranscript

Symmetric Keys

This needs to be a PRF

Modern Protocols in a nutshell
Client Server

Transcript

Shared Key

HMAC

KeyTranscript

Symmetric Keys

Provably a PRF

(derive)

Modern Protocols - in reality
Client Server

Transcript

Shared Keys

KDF

Key1Transcript

Symmetric Keys

Key2

We Often Use Two Keys

● TLS 1.3, DHE+PSK (resumption)
● Hybrid Key Exchange in TLS 1.3 (Classical + Post-Quantum)
● Signal Double Ratchet

A KDF Taking Two Keys

● General approach: k = Combine(key1, key2); output = HMAC(k, transcript)
○ Both for existing constructions, and our proposal.

● “Takes two keys” = Dual-PRF: PRF when keyed by either output.
○ Attacker may realistically control either key1 or key2, other key is random.
○ We do not know in advance which key is controlled by the attacker.

A KDF Taking Two Keys

● General approach: k = Combine(key1, key2); output = HMAC(k, transcript)
○ Both for existing constructions, and our proposal.

● “Takes two keys” = Dual-PRF: PRF when keyed by either output.
○ Attacker may realistically control either key1 or key2, other key is random.
○ We do not know in advance which key is controlled by the attacker.

● Can we use HMAC as the key combiner?
● HMAC is generally not a dual-PRF.

○ Never intended or proved to satisfy this.
○ Definitely not a dual-PRF if underlying hash function is not CR.

Our construction

● Uses an underlying standard hash function, not necessarily collision-resistant
● Fully practical: “symmetric crypto”, cheap to compute.
● Construction likely to be used alongside asymmetric crypto, so relative cost is

minimal.
● Security proof in [ePrint/2022/065]

‘derive1’||K1 H HMAC

‘derive1’||K1 H HMAC

K2

F

2||F(K2)

‘derive1’||K1 H HMAC

K2

F

2||F(K2)

H HMAC‘derive2’||K2

K1

F

1||F(K1)

‘derive1’||K1 H HMAC

K2

F

2||F(K2)

H HMAC‘derive2’||K2

K1

F

1||F(K1)

H

output

New “Expanding Function” F

Split to blocks according to hash
function block size

m1 m2 mn...

m

New “Expanding Function” F

0||m1 1||m1

H H

H(0||m1) H(1||m1)

Split to blocks according to hash
function block size

m1 m2 mn...

m

...

New “Expanding Function” F

0||m1 1||m1

H H

H(0||m1) H(1||m1)

0||m2 1||m2

H H

H(0||m2) H(1||m2)

Split to blocks according to hash
function block size

m1 m2 mn...

m

...

New “Expanding Function” F

0||m1 1||m1

H H

H(0||m1) H(1||m1)

0||m2 1||m2

H H

H(0||m2) H(1||m2)

Split to blocks according to hash
function block size

m1 m2 mn...

m

Taking expansion factor
j=2, we hash each block
twice, with different IVs.
We propose j=3.

Our construction (cont.)

● H(HMAC(key=H1(k1), data=2||F(k2)) xor HMAC(key=H2(k2), data=1||F(k1)))
○ H1, H2: Hash with prefix, see diagram on previous slides

● F(k) is an expanding injective OWF:
○ Split k into blocks, according to block size of H. k = k1||k2||...||kn
○ Let j≅3 denote an “expansion factor”.

● F(k) = H(0||k1)||H(1||k1)||...||H(j||k1)||H(0||k2)||H(1||k2)||...||H(j||k2)||H(0||Kn)||H(1||Kn)||...||H(j||kn)

Choosing The Expansion Factor

● Why expansion factor j=3?
● Expansion required to ensure OWF is injective. More expansion -> longer

output -> higher chance of injectivity.
● KDF is “ossification surface”, hard to upgrade when cryptanalysis (inevitably)

improves.
● Conservatively assume underlying hash function is as broken as MD5 is

today. Then j=2 is enough, j=3 is robust security margin.
○ (j=2: plausible choice, but seems risky)
○ (higher j, e.g. j=5 also plausible, but seems like overkill)

Benchmarks

● Construction much cheaper than asymmetric crypto.
● Our construction: 7.1 μsec/call.
● HKDF (with concatenated keys): 1.3 μsec/call.

○ Overhead is 5.8 μsec/call.
● Asymmetric crypto:

○ X25519, twice per connection: 44.7 μsec/exponentiation.
○ Secp256r1 ECDSA: 79 / 24.6 μsec for verify/sign.
○ NTRU-HRSS: 17.6 / 11.2 μsec for decaps./encaps.

● Even with only two exponentiations and signature, overhead is only 5%.
○ Likely lower for most use cases, e.g. with verification, NTRU-HRSS.
○ (If higher for some use cases, can consider j=2.)

Key Combiners in Practice

● TLS 1.3 DHE+PSK, Signal Double Ratchet: Combine keys using
HKDF/HMAC.

● Hybrid TLS 1.3, [ETSI], [NIST]: Concatenate keys, proceed as usual.
● TLS 1.3, DHE Only: Keyed through “message” input of HMAC (!)
● Standardized dual-PRF would make standards more robust, also with a single

key.
● We are thinking of writing an Internet Draft for this technique; would the RG

find this useful?

Thanks!
Questions?

References

● https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
● [ePrint/2022/065] Practical (Post-Quantum) Key Combiners from One-Wayness and Applications to

TLS. Nimrod Aviram, Benjamin Dowling, Ilan Komargodski, Kenneth G. Paterson, Eyal Ronen,
Eylon Yogev

● [HMAC] Bellare, Mihir. "New proofs for NMAC and HMAC: Security without collision-resistance."
Crypto 2006.

● [BelLyn] Bellare, Mihir, and Anna Lysyanskaya. "Symmetric and Dual PRFs from Standard
Assumptions: A Generic Validation of an HMAC Assumption." IACR Cryptol. ePrint Arch. 2015
(2015): 1198.

● [ETSI] https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?wki_id=56901
● [NIST] https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final

https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?wki_id=56901
https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final

