AEGIS
Fast Authenticated Encryption Family

F. Denis (Fastly Inc.), F.E.R. Scotoni, S. Lucas,
C. Fruhwirth (Google), D. Bleichenbacher (Google)
B. Preneel (Univ. of Leuven),
H. Wu (Nanyang Technological Univ.)

CFRG @IETF113
The AEGIS family of authenticated encryption algorithms

draft-denis-aegis-aead-03 – 6 March 2022

- nonce-based Authenticated Encryption
- 2x faster than AES-GCM: 0.287 cycles/byte
- high security level
- multiple implementations available (including in Linux kernel)
Design: AEGIS-128L

- K, IV (nonce), data words, tag: 128 bits
- large state: 8 x 128 bits
- modular
- easy to analyze
- create stream cipher from MAC algorithm
Design: AEGIS-128L (2/2): 1 round

- Accepts 2 128-bit plaintext words t_0, t_1
- Updates 7x128-bit state $S_0, \ldots S_7$
- Non-linear output function produces 2 128-bit words z_0 and z_1
- Ciphertext = $t_0 \oplus z_0 \oplus t_1 \oplus z_1$
Security properties

Nonce-based authenticated encryption with associated data

<table>
<thead>
<tr>
<th></th>
<th>confidentiality</th>
<th>data authentication (forgery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEGIS-128L</td>
<td>2^{128}</td>
<td>2^{128}</td>
</tr>
<tr>
<td>AEGIS-256</td>
<td>2^{256}</td>
<td>2^{128}</td>
</tr>
</tbody>
</table>

AEGIS-128L:
per key 2^{48} messages (each with different nonce)

AEGIS-256:
no practical restriction on # messages/key
key recovery faster than 2^{256} possible after 2^{128} online forgery attempts
AEGIS security properties

- Key committing: cannot generate a ciphertext that successfully decrypts under multiple keys
- Nonce: length can be freely chosen ([0,128] or [0,256])

Not

- resistant to nonce reuse
- allowed to release unverified plaintext
- compactly committing: same ciphertext can be successfully decrypted under multiple keys

Inherent if speed > AES & 128-bit tag
AEGIS: independent security evaluation

- [Minaud, SAC 2014][Eichlseder+ FSE 2020]

 - Correlation in keystream if $2^{152}..2^{162}$ ciphertexts are available for AEGIS-256 (purely certificational)

- Attacks on reduced round initialization of AEGIS-128

 - [Liu+, FSE 2022] – does not apply to schemes in draft

 - 5/10 rounds: 2^{96} weak keys that can be recovered in time 2^{72}

 - [SHI+22, Chinese J. Electronics]

 - 4/10 rounds: key recovery 2^{34} IV queries in time 2^{30} and memory 2^{30}
AEGIS performance

- Parallelizable
- Online for encryption
- Optimal use of AES hardware support

Next slides: comparison

- AEGIS128L
 https://github.com/google/aegis_cipher
- AES-128-GCM from BoringCrypto:
 https://boringssl.googlesource.com/boringssl/
Intel Skylake Xeon with HyperThreading (3 cores)
dL1:32KB dL2:1024KB dL3:8MB (3696 MHz)
cycles/byte

![Graph showing cycles/byte for different data sizes and encryption types.]

- GCM AES128
- AEGIS128L
ARM Neoverse N1 (64 cores) (3000 MHz)
(cycles/byte)
Conclusion: AEGIS

- Simple design for 128-bit and 256-bit security
- Ultra fast for protecting network packets
 - targeting platform with AES hardware support
 - without this support, AEGIS is faster than plain AES (factor 1.25-2)
- High level of security