
CFRG - IETF 113 - Vienna

CFRG Specifications
in Theory and Practice

Disclaimer

1. This is based on my personal experience
accumulated in the CFRG, and does not
represent the group’s shared view

2. It is not meant to point fingers or assign
blame – it’s meant to highlight ways we
can improve the group’s primary
deliverables

2

Specifications in Theory and Practice - CFRG - IETF 113

CFRG specifications in theory

CFRG charter: The CFRG serves as a bridge between theory and practice,
bringing new cryptographic techniques to the Internet community and promoting
an understanding of the use and applicability of these mechanisms via
Informational RFCs…

RFC2026: An "Informational" specification is published for the general
information of the Internet community, and does not represent an Internet
community consensus or recommendation. The Informational designation is …
subject only to editorial considerations and to verification that there has been
adequate coordination with the standards process.

3

https://irtf.org/cfrg
https://datatracker.ietf.org/doc/html/rfc2026#section-4.2.2

Specifications in Theory and Practice - CFRG - IETF 113

CFRG specifications in theory

CFRG charter: The CFRG serves as a bridge between theory and practice,
bringing new cryptographic techniques to the Internet community and promoting
an understanding of the use and applicability of these mechanisms via
Informational RFCs…

RFC2026: An "Informational" specification is published for the general
information of the Internet community, and does not represent an Internet
community consensus or recommendation. The Informational designation is …
subject only to editorial considerations and to verification that there has
been adequate coordination with the standards process.

4

https://irtf.org/cfrg
https://datatracker.ietf.org/doc/html/rfc2026#section-4.2.2

Specifications in Theory and Practice - CFRG - IETF 113

CFRG specifications target a wide
variety of audiences:

● Protocol designers and
implementers

● Cryptographic reviewers
● …

CFRG specifications in practice

CFRG specifications have significant
impact on protocol design, security
analysis, and implementations:

● RFC2104: HMAC
● RFC5869: HKDF
● RFC7748: Curve25519/X25519
● RFC8032: EdDSA
● RFC9180: HPKE
● … any many more

5

https://www.rfc-editor.org/rfc/rfc2104.html
https://datatracker.ietf.org/doc/rfc5869/
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc9180

Specifications in Theory and Practice - CFRG - IETF 113

There are (at least) three different parts of a specification:

1. Functional specification. What does this object do? What is its purpose?
2. Syntax specification. How do I interact with this object?
3. Implementation specification. How does this object work internally?

Presentation of each should be tailored to its audience

Specification components

6

Specifications in Theory and Practice - CFRG - IETF 113

Key questions for specification writers

1. Is the specification easy to understand and use?
a. Is the functional description of the cryptographic object clear?
b. What is the cognitive load required to understand the specification?
c. Is the syntax of the object clear?

2. Will the specification yield consistent and correct implementations?
a. Is the functional behavior well-defined?
b. Is the implementation description clear?

7

Specifications in Theory and Practice - CFRG - IETF 113

Consider RFC8032’s Verify description:

 1. To verify a signature on a message M using public key
A, with F being 0 for Ed25519ctx, 1 for Ed25519ph, and if
Ed25519ctx or Ed25519ph is being used, C being the
context, first split the signature into two 32-octet halves.
Decode the first half as a point R, and the second half as an
integer S, in the range 0 <= s < L. Decode the public key A
as point A'. If any of the decodings fail (including S being out
of range), the signature is invalid.

 2. Compute SHA512(dom2(F, C) || R || A || PH(M)), and
interpret the 64-octet digest as a little-endian integer k.

 3. Check the group equation [8][S]B = [8]R + [8][k]A'. It's
sufficient, but not required, to instead check [S]B = R + [k]A'.

Example: RFC8032 (EdDSA)

8

Questions:

● Is the specification easy to understand and
use?

● Will the specification yield consistent and
correct implementations?

https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7

Specifications in Theory and Practice - CFRG - IETF 113

Consider RFC8032’s Verify description:

 1. To verify a signature on a message M using public key
A, with F being 0 for Ed25519ctx, 1 for Ed25519ph, and if
Ed25519ctx or Ed25519ph is being used, C being the
context, first split the signature into two 32-octet halves.
Decode the first half as a point R, and the second half as an
integer S, in the range 0 <= s < L. Decode the public key A
as point A'. If any of the decodings fail (including S being out
of range), the signature is invalid.

 2. Compute SHA512(dom2(F, C) || R || A || PH(M)), and
interpret the 64-octet digest as a little-endian integer k.

 3. Check the group equation [8][S]B = [8]R + [8][k]A'. It's
sufficient, but not required, to instead check [S]B = R + [k]A'.

Example: RFC8032 (EdDSA)

Source: https://hdevalence.ca/blog/2020-10-04-its-25519am 9

Questions:

● Is the specification easy to understand and
use? ❓

● Will the specification yield consistent and
correct implementations? 🅇

https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7
https://hdevalence.ca/blog/2020-10-04-its-25519am

Specifications in Theory and Practice - CFRG - IETF 113

Consider RFC8032’s Verify description:

 1. To verify a signature on a message M using public key
A, with F being 0 for Ed25519ctx, 1 for Ed25519ph, and if
Ed25519ctx or Ed25519ph is being used, C being the
context, first split the signature into two 32-octet halves.
Decode the first half as a point R, and the second half as an
integer S, in the range 0 <= s < L. Decode the public key A
as point A'. If any of the decodings fail (including S being out
of range), the signature is invalid.

 2. Compute SHA512(dom2(F, C) || R || A || PH(M)), and
interpret the 64-octet digest as a little-endian integer k.

 3. Check the group equation [8][S]B = [8]R + [8][k]A'. It's
sufficient, but not required, to instead check [S]B = R + [k]A'.

Example: RFC8032 (EdDSA)

Source: https://hdevalence.ca/blog/2020-10-04-its-25519am 10

Questions:

● Is the specification easy to understand and
use? ❓

● Will the specification yield consistent and
correct implementations? 🅇

Ambiguous implementation description

https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7
https://hdevalence.ca/blog/2020-10-04-its-25519am

Specifications in Theory and Practice - CFRG - IETF 113

Example: OPAQUE

11

Questions:

● Is the specification easy to understand and
use?

● Will the specification yield consistent and
correct implementations?

draft-irtf-cfrg-opaque

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-08

Specifications in Theory and Practice - CFRG - IETF 113

Example: OPAQUE

RFC7748

draft-irtf-cfrg-hash-to-curve

draft-irtf-cfrg-ristretto255-decaf-448

draft-irtf-cfrg-voprf

draft-irtf-cfrg-opaque

RFC9106 RFC2104 RFC5869

12

Questions:

● Is the specification easy to understand and
use? 🅇

● Will the specification yield consistent and
correct implementations?❓

3DH

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-14
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-03
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-08
https://www.rfc-editor.org/rfc/rfc9106
https://www.rfc-editor.org/rfc/rfc2104
https://www.rfc-editor.org/rfc/rfc5869

Specifications in Theory and Practice - CFRG - IETF 113

Example: OPAQUE

RFC7748

draft-irtf-cfrg-hash-to-curve

draft-irtf-cfrg-ristretto255-decaf-448

draft-irtf-cfrg-voprf

draft-irtf-cfrg-opaque

RFC9106 RFC2104 RFC5869

13

Questions:

● Is the specification easy to understand and
use? 🅇

● Will the specification yield consistent and
correct implementations?❓

Huge cognitive load required to
understand the entire protocol

3DH

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-14
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-03
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-08
https://www.rfc-editor.org/rfc/rfc9106
https://www.rfc-editor.org/rfc/rfc2104
https://www.rfc-editor.org/rfc/rfc5869

Specifications in Theory and Practice - CFRG - IETF 113

Problem statement:

● CFRG produces technical specifications for cryptographic objects that are
consumed by a diverse audience

● Each object is expected to have easy-to-understand and well-defined
behavior with clear syntax (API)

● Failure to establish this clarity and consistency will yield specifications with
little or no value and possibly harmful consequences in practice

Writing technical specifications such that they detail cryptographic objects with
well-defined behavior and clear syntax is challenging

Thesis

14

Case study:
hash-to-curve

15

Specifications in Theory and Practice - CFRG - IETF 113

hash_to_curve is a uniform encoding from byte strings to points in some elliptic
curve group G

Hash-to-curve overview

16

hash_to_curve(msg)

Input: msg, an arbitrary-length byte string.
Output: P, a point in G.

Steps:
1. u = hash_to_field(msg, 2)
2. Q0 = map_to_curve(u[0])
3. Q1 = map_to_curve(u[1])
4. R = Q0 + Q1 # Point addition
5. P = clear_cofactor(R)
6. return P

Specifications in Theory and Practice - CFRG - IETF 113

hash_to_curve is a uniform encoding from byte strings to points in some elliptic
curve group G

Hash-to-curve overview

17

hash_to_curve(msg)

Input: msg, an arbitrary-length byte string.
Output: P, a point in G.

Steps:
1. u = hash_to_field(msg, 2)
2. Q0 = map_to_curve(u[0])
3. Q1 = map_to_curve(u[1])
4. R = Q0 + Q1 # Point addition
5. P = clear_cofactor(R)
6. return P

Questions:

● Is the specification easy to understand and
use?

● Will the specification yield consistent and
correct implementations?

Specifications in Theory and Practice - CFRG - IETF 113

The function map_to_curve calculates a point on the elliptic curve E from an
element of the finite field F over which E is defined. Section 6 describes
mappings for a range of curve families.

map_to_curve(u)
Input: u, an element of field F.
Output: Q, a point on the elliptic curve E.
Steps: defined in Section 6.

Functional specification: map-to-curve

18

Functional description suitable for
understanding what it is this object

does and why

Specifications in Theory and Practice - CFRG - IETF 113

Preconditions: A Montgomery curve K * t^2 = s^3 + J * s^2 + s where J != 0, K != 0, and (J^2 - 4) / K^2 is non-zero and non-square in F.

Constants:
J and K, the parameters of the elliptic curve.
Z, a non-square element of F. Appendix H.3 gives a Sage [SAGE] script that outputs the RECOMMENDED Z.

Exceptions: The exceptional case is Z * u^2 == -1, i.e., 1 + Z * u^2 == 0. Implementations must detect this case and set x1 = -(J / K). Note that
this can only happen when q = 3 (mod 4).

Operations:
1. x1 = -(J / K) * inv0(1 + Z * u^2)
2. If x1 == 0, set x1 = -(J / K)
3. gx1 = x1^3 + (J / K) * x1^2 + x1 / K^2
4. x2 = -x1 - (J / K)
5. gx2 = x2^3 + (J / K) * x2^2 + x2 / K^2
6. If is_square(gx1), set x = x1, y = sqrt(gx1) with sgn0(y) == 1.
7. Else set x = x2, y = sqrt(gx2) with sgn0(y) == 0.
8. s = x * K
9. t = y * K
10. return (s, t)

Syntax specification: map-to-curve

19

Syntax suitable for understanding the
high-level functionality

Specifications in Theory and Practice - CFRG - IETF 113

map_to_curve_elligator2(u)

Input: u, an element of F.
Output: (s, t), a point on M.

Constants:
1. c1 = J / K
2. c2 = 1 / K^2

Steps:
1. tv1 = u^2
2. tv1 = Z * tv1 # Z * u^2
3. e1 = tv1 == -1 # exceptional case: Z * u^2 == -1
4. tv1 = CMOV(tv1, 0, e1) # if tv1 == -1, set tv1 = 0
5. x1 = tv1 + 1
6. x1 = inv0(x1)
7. x1 = -c1 * x1 # x1 = -(J / K) / (1 + Z * u^2)
8. gx1 = x1 + c1
9. gx1 = gx1 * x1
10. gx1 = gx1 + c2
11. gx1 = gx1 * x1 # gx1 = x1^3 + (J / K) * x1^2 + x1 / K^2
12. x2 = -x1 - c1
13. gx2 = tv1 * gx1
14. e2 = is_square(gx1) # If is_square(gx1)
15. x = CMOV(x2, x1, e2) # then x = x1, else x = x2
16. y2 = CMOV(gx2, gx1, e2) # then y2 = gx1, else y2 = gx2
17. y = sqrt(y2)
…

Implementation specification: map-to-curve

20

Implementation description suitable for
bridging the gap between mathematical

description and required behavior

Specifications in Theory and Practice - CFRG - IETF 113

Delta between functional, syntax, and implementation specifications is a delicate
balance

Functional specification should be maximally clear for people trying to understand
what the object does without understanding how it works

Syntax specification should follow from the functional specification and be easy to
use and hard to misuse

Implementation specification should given implementers confidence in their
implementation

No one-size-fits-all

21

Specifications in Theory and Practice - CFRG - IETF 113

Generally aim towards alignment between across functional, syntax, and
implementation specifications

● Use consistent pseudocode to describe all three
● Make pseudocode match reference implementation as close as possible

Improve clarity by reusing concepts and notation

● Use consistent terminology and vocabulary
● Adopt consistent presentation format (e.g., for pseudocode)

Achieving balance

22

Specifications in Theory and Practice - CFRG - IETF 113

CFRG strives to produce high quality specifications of cryptographic objects

… but consistency across drafts is lacking

Consistency and clarity across drafts

23

Specifications in Theory and Practice - CFRG - IETF 113

CFRG strives to produce high quality specifications of cryptographic objects

… but consistency across drafts is lacking

Consistency and clarity across drafts

24

RFC7748

draft-irtf-cfrg-hash-to-curveRFC8032

draft-irtf-cfrg-ristretto255-decaf-448

draft-irtf-cfrg-voprf

draft-irtf-cfrg-opaque

draft-irtf-cfrg-cpacedraft-irtf-cfrg-vrf

RFC9180

draft-irtf-cfrg-spake2

draft-irtf-cfrg-frost

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-14
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-03
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-08
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-cpace-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-11
https://datatracker.ietf.org/doc/html/rfc9180
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-spake2-26
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-03

Specifications in Theory and Practice - CFRG - IETF 113

Wrapping up

CFRG specifications (... standards …) are important to the community, and clarity
is of the utmost importance for the documents produced

Most drafts are clear and internally consistent, but there’s more that can be done

● Reference implementation requirements and reviews?
● Common requirements for syntax (APIs)?
● Reference implementation derived from specification a la hacspec? How can

formal methods help improve specification quality?

The group lacks consistency across drafts, which is solvable problem

● Use common terminology, concepts, and notation across related documents?
● Share reference implementations for related documents?

25

CFRG - IETF 113 - Vienna

CFRG Specifications
in Theory and Practice

