
Verifiable Distributed
Aggregation Functions

draft-patton-cfrg-vdaf-01

Presented at IETF 113 (CFRG)
Authors: Christopher Patton (speaker), Richard Barnes, Phillipp Schoppmann

1

Context

draft-patton-cfrg-vdaf-01 - IETF 113 (CFRG) 2

● PPM working group's objective is to standardize multi-party computation for
privacy preserving measurement

○ draft-gpew-priv-ppm-01 – the "PPM protocol", candidate for PPM working
group adoption

■ Specifies end-to-end verification and aggregation of measurements
over HTTPS

○ This document (draft-patton-cfrg-vdaf-01) – The core cryptographic
component of the PPM protocol

● Ask for the CFRG: Is draft-patton-cfrg-vdaf-01 ready for adoption by the
working group?

https://datatracker.ietf.org/doc/draft-gpew-priv-ppm/
https://datatracker.ietf.org/doc/draft-patton-cfrg-vdaf/

Overview of VDAFs

draft-patton-cfrg-vdaf-01 - IETF 113 (CFRG) 3

1. Shard – Each Client splits its measurement into
input shares and sends one share to each
Aggregator.

2. Prepare – Aggregators prepare each set of input
shares for aggregation. Input shares are mapped to
output shares using an optional aggregation
parameter.

3. Aggregate – Each Aggregator combines its output
shares into an aggregate share and sends it to the
Collector.

4. Unshard – Collector combines aggregate shares
into the aggregate result.

aggregation param

aggregate result

aggregate shares

input shares

measurements

Client Client Client

Aggregator Aggregator

Collector

Candidate Constructions – Prio [CGB17, BBCG+19]

draft-patton-cfrg-vdaf-01 - IETF 113 (CFRG) 4

1. Shard – Client i splits m[i] into secret shared
vectors X[i] and X[i] over some finite field.

2. Prepare – For each i, Aggregators interact among
themselves in order to verify that X[i] + X[i] is a
valid input.

3. Aggregate –

○ First aggregator: Y = X[1] + X[2] + X[3]

○ Second aggregator: Y = X[1] + X[2] + X[3]

4. Unshard – Collector computes a = Y + Y.

aggregate result

aggregate shares

input shares

measurements

Client Client Client

Aggregator Aggregator

Collector

a

m[1] m[2] m[3]

 X[1] X[2] X[3] X[1] X[2] X[3]

 Y Y

Candidate Constructions – Poplar [BBCG+21]

draft-patton-cfrg-vdaf-01 - IETF 113 (CFRG) 5

● Problem: securely compute the heavy
hitters

○ Measurements: N-bit strings

■ (N=3) 000, 111, 010, 011, 100,
110, 100, 010, 010, 101, 001

○ Aggregate result: Strings with at
least T hits

■ (T=2) 010, 100

● Solution: Incremental Distributed Point
Functions (IDFPs)

○ Clients split their measurement into IDPF
shares

○ Aggregators query IDPF shares on
candidate prefixes

■ Input = 011: Is 0 a prefix? Yes; Is 1 a
prefix? No; Is 01 a prefix? Yes; …

○ Each aggregator holds a share of each
query output.

■ Output shares are aggregatable into
hit counts, i.e., the frequency of each
candidate prefix.

Candidate Constructions – Poplar [BBCG+21]

draft-patton-cfrg-vdaf-01 - IETF 113 (CFRG) 6

candidate prefixes

heavy hitters

hit count shares

IDPF shares

strings

Client Client Client

Aggregator Aggregator

Collector

1. Shard – Client generates IDPF shares from its
input string.

2. Prepare – Each Aggregator queries its IDPF share
at each candidate prefix. Aggregators interact in
order verify the output shares are well-formed
(without revealing the output).

3. Aggregate – Each Aggregator combines its output
shares into a share of the hit count for each
candidate prefix.

4. Unshard – Collector combines hit count shares to
get hit counts of each candidate prefix. (Hit counts
used to compute the next set of candidate
prefixes.)

Progress since IETF 112

draft-patton-cfrg-vdaf-01 - IETF 113 (CFRG) 7

● Minor syntax improvements

● Complete spec of Prio, including a reference
implementation for generating test vectors

○ Reference implementation (Sage):
https://github.com/cjpatton/vdaf/tree/main/poc

○ Rust implementation:
https://docs.rs/prio/0.7.0/prio/vdaf/prio3

■ Lots of room for optimization, but fast
enough for now

VDAF Client
runtime

Client
communication

Prio3Aes128Count 11.3 us 80 bytes

Prio3Aes128Histogram
(10 buckets)

22.6 us 768 bytes

Prio3Aes128Sum
(32 bits)

47.2 us 2,656 bytes

https://github.com/cjpatton/vdaf/tree/main/poc
https://docs.rs/prio/0.7.0/prio/vdaf/prio3

Next Steps

draft-patton-cfrg-vdaf-01 - IETF 113 (CFRG) 8

● Complete spec of Poplar

○ Incomplete implementations exist, none are interoperable.

■ C++: https://github.com/google/distributed_point_functions

■ Rust: https://docs.rs/prio/0.7.0/prio/vdaf/poplar1

● Security analysis and fleshed out security considerations

● More VDAFs! Either in this document or elsewhere

● Enumeration of open issues: https://github.com/cjpatton/vdaf/issues

https://github.com/google/distributed_point_functions
https://docs.rs/prio/0.7.0/prio/vdaf/poplar1/index.html
https://github.com/cjpatton/vdaf/issues

References

● [CGB17] Corrigan-Gibbs-Boneh. "Prio: Private, Robust, and Scalable Computation of Aggregate
Statistics". NSDI 2017.

● [BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs".
CRYPTO 2019.

● [BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters". IEEE S&P 2021.

9draft-patton-cfrg-vdaf-01 - IETF 113 (CFRG)

