
Key Update for OSCORE (KUDOS)
draft-ietf-core-oscore-key-update-01

Rikard Höglund, RISE
Marco Tiloca, RISE

IETF 113, CoRE WG, March 25th, 2022

IETF 113 | CoRE WG | 2022-03-25 | Page 2

› OSCORE (RFC8613) uses AEAD algorithms to provide security

– Need to follow limits in number of encryptions and failed decryptions, before rekeying

– Excessive use of the same key can enable breaking security properties of the AEAD algorithm*

› (1) AEAD Key Usage Limits in OSCORE

– Defining appropriate limits for OSCORE, for a variety of algorithms

– Defining counters for key usage; message processing details; steps when limits are reached

– Now recommends (q, v, l) = (2^20, 2^14, 2^8) for AES 128 CCM 8; details in Appendix A

› (2) Defined Key Update for OSCORE (KUDOS) MAIN FOCUS OF TODAY

– Loosely inspired by Appendix B.2 of OSCORE

– Goal: Renew the Master Secret and Master Salt; derive new Sender/Recipient keys from those

– Achieves Forward Secrecy

Content Recap

*See also draft-irtf-cfrg-aead-limits-03

IETF 113 | CoRE WG | 2022-03-25 | Page 3

› Method for rekeying OSCORE

– Key Update for OSCORE (KUDOS)

– Client and server exchange nonces R1 and R2

– UpdateCtx() function for deriving new OSCORE

Security Context using the nonces

Key Update Recap
Client-initiated rekeying

IETF 113 | CoRE WG | 2022-03-25 | Page 4

› Added alternative KUDOS mode without Forward Secrecy in Appendix E

– Initially raised on the CoRE mailing list in [1]

– It allows stateless key update on loss of state (e.g., rebooting)

› Needed for constrained devices that cannot store information to persistent memory

› Extension to KUDOS, enabling the selection of a no-FS mode through a new bit ‘p’

– 'p' set to 0 ==> run KUDOS in FS mode (original mode)

› Devices capable of writing to persistent memory should initiate the procedure with ‘p’ set to 0

– 'p' set to 1 ==> run KUDOS in no-FS mode

› New concepts defined

› Latest Master Secret and Latest Master Salt

› From the latest derived OSCORE Security; should be stored on disk by a device capable to do so

› Bootstrap Master Secret & Bootstrap Master Salt

› If provisioned they are stored on disk, and they are never changed by the device

Key Update without FS (1/2)

[1] https://mailarchive.ietf.org/arch/msg/core/EL0yHxQrP2DQwHxo6ojnQedvFbY/

https://mailarchive.ietf.org/arch/msg/core/EL0yHxQrP2DQwHxo6ojnQedvFbY/

IETF 113 | CoRE WG | 2022-03-25 | Page 5

› Running KUDOS in no-FS mode

– Before starting KUDOS, the current OSCORE Context CTX_OLD is modified to ensure that

› Master Secret = Bootstrap Master Secret ; Master Salt = Bootstrap Master Salt

– Thus forward secrecy is sacrificed, but all other properties of KUDOS remain!

› This mode of KUDOS requires that both peers have Bootstrap Master Secret/Salt

› Agreed downgrading of mode is possible

– If the initiator sets 'p' to 0, the responder might be unable continue (if it cannot write to disk)

› Server responder: Return a protected 5.03 error response to Request #1, with 'p' set to 1

› Client responder: Send a protected Request #2, with 'p' set to 1

› In either case, abort KUDOS

– Then, the initiator may retry with 'p' set to 1, to support the best possible common thing

› Reasonable approach? Comments? Good to move to the draft main body?

Key Update without FS (2/2)

IETF 113 | CoRE WG | 2022-03-25 | Page 6

› Scenario description:

1. The client starts an observation Obs1 by sending a request Req1 with req_piv X

2. The two peers run KUDOS and reset their Sender Sequence Number (SSN) to 0.

3. Later on, while Obs1 is still ongoing, the client sends a new request Req2 also with req_piv X.

This is not necessarily an observation request.

› Problem: A notification sent by the server for Obs1 or a response to Req2 would both

cryptographically match against Req1 and Req2

› Now Appendix C defines

– A method for “long-jumping" beyond PIVs already in use for observations (more on next slide)

– A new bit ‘b’ to signal interest in keeping observations

› If there is no mutual interest, delete observations after key update

Keeping Observations (1/2)

IETF 113 | CoRE WG | 2022-03-25 | Page 7

› "Long-jumping” method

– When wishing to send a first request after a KUDOS execution, the client determines the PIV*

as the highest req_piv among all the ongoing observations.

– The client updates its SSN to be (PIV* + 1)

› Issue: Client needs explicit confirmation from server to remove an ongoing observation

– What if the client cannot get this confirmation?

– A peer maintains a counter EPOCH for each ongoing observation it participates in,

incrementing the EPOCH for every KUDOS execution

– When EPOCH reaches MAX_EPOCH (same for both peers) the associated observation is

deleted by both peers

› MAX_EPOCH

– Need good default value to recommend

Keeping Observations (2/2)

Comments?

Admit negotiation of

MAX_EPOCH in KUDOS?

IETF 113 | CoRE WG | 2022-03-25 | Page 8

› Appendix D defines a method to update peers’ Sender and Recipient IDs

– Based on earlier discussions on mailing list [1][2]

› Properties

– Each peer specifies its own new Recipient ID (similar to EDHOC)

– Accepting to update the Sender/Recipient IDs is optional; explicit confirmation is needed

– This procedure can be embedded in a KUDOS execution or run standalone

– Possible for both client and server to initiate this procedure

– Changing IDs practically triggers derivation of new OSCORE key material

– Must not be done immediately following a reboot (e.g., KUDOS must be run first)

Renew Sender/Recipient IDs (1/3)

[1] https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/

[2] https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/

https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/
https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/

IETF 113 | CoRE WG | 2022-03-25 | Page 9

› Defined new CoAP Option to carry the desired Recipient ID

– Proposed option number 24 (00011000)

– The option value is the selected new Recipient ID of the message sender

– The peer selects and offers a free Recipient ID for the used ID Context

– Class E option for OSCORE processing

Renew Sender/Recipient IDs (2/3)

IETF 113 | CoRE WG | 2022-03-25 | Page 10

Renew Sender/Recipient IDs (3/3)

IETF 113 | CoRE WG | 2022-03-25 | Page 11

Renew Sender/Recipient IDs (3/3)

Objections? Alternatives?

IETF 113 | CoRE WG | 2022-03-25 | Page 12

› Currently 3 bits are defined

– "ID Detail Flag", 'd’

› Signals inclusion of ID Detail in OSCORE option

– "No Forward Secrecy", 'p‘

› Signals the use of the no-FS mode

– "Preserve Observations", 'b’

› Signals preservation of CoAP Observations

› Where to put bits ‘b’ & ‘p’, and integrity protect them?

– In the 1 byte 'x' following 'kid context‘, originally

encoding the size of 'id detail'

– Recommended size of nonces R1 & R2 (carried in ‘id

detail’) is 8 bytes Number of bits available in the 'x'

byte is still sufficient to indicate the size of 'id detail‘

– The ‘x’ value is taken as input in the derivation of the

new OSCORE Security Context

Alternatives for signaling

Comments?

IETF 113 | CoRE WG | 2022-03-25 | Page 13

› Latest updates

– Suggested key update without forward secrecy (Appendix E)

– Suggested method for preserving observations across key updates (Appendix C)

– Suggested procedure to update OSCORE Sender/Recipient IDs (Appendix D)

– Proposed alternative placement for signaling bits

– Improvements in message processing

– Optional storing optimization for ‘count_q’ (Appendix B)

› Address open points and issues – Feedback is welcome!

– Improve the suggestions above, move to document body

– Clarify which KUDOS messages can contain actionable payload

› Implementation

– To build on existing implementation of OSCORE in Java Californium

Summary and next steps

Thank you!

Comments/questions?

https://github.com/core-wg/oscore-key-update

https://github.com/core-wg/oscore-key-update

IETF 113 | CoRE WG | 2022-03-25 | Page 15

› Defined a new method for rekeying OSCORE

– Key Update for OSCORE (KUDOS)

– Client and server exchange nonces R1 and R2

– UpdateCtx() function for deriving new OSCORE Security

Context using the nonces

› Properties
› Can be initiated by either the client or server

› Completes in one round-trip (after that, the new

Security Context can be used)

› Only one intermediate Security Context is derived

› The ID Context does not change

› Robust and secure against peer rebooting

› Compatible with prior key establishment using the

EDHOC protocol

› Mode with PFS (stateful) and without PFS (stateless)

› Possibility to update Recipient/Sender IDs

Key update overview
Client-initiated rekeying

NEW

NEW

IETF 113 | CoRE WG | 2022-03-25 | Page 16

› OSCORE Option: defined the use of flag bit 1 to signal presence of flag bits 8-15

› Defined flag bit 15 -- 'd' -- to indicate:
– This is a OSCORE key update message

– "id detail" is specified (length + value); used to transport a nonce for the key update

OSCORE Option update

IETF 113 | CoRE WG | 2022-03-25 | Page 17

› Recap on AEAD limits

– Discussed in draft-irtf-cfrg-aead-limits-03

– Limits key use for encryption (q) and invalid decryptions (v)

– This draft defines fixed values for ‘q’, ‘v’, and ‘l’ and from those calculate CA & IA probabilities

› IA & CA probabilities must be acceptably low

› Now explicit size limit of protected data to be sent in a new OSCORE message

– The probabilities are influenced by ‘l’, i.e., maximum message size in cipher blocks

– Implementations should not exceed 'l', and it has to be easy to avoid doing so

– New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding

for a message may not exceed the block size for the selected algorithm multiplied with 'l‘

› New table (Figure 3) showing values of ‘l’ not just in cipher blocks but actual bytes

Key limits (1/3)
Confidentiality Advantage (CA):

Probability of breaking

confidentiality properties

Integrity Advantage (IA):

Probability of breaking

integrity properties

IETF 113 | CoRE WG | 2022-03-25 | Page 18

› Increased value of ‘l’ (message size in blocks) for algos except AES_128_CCM_8

– Increasing ‘l’ from 2^8 to 2^10 should maintain secure CA and IA probabilities

– draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2^-50

› They have added a table in that document with calculated ‘q’ and ‘v’ values

› Intent is to increase 'q', 'v' and/or 'l' further. Should we?

– Since we are well below 2^-50 for CA & IA currently

Key limits (2/3)

q = 2^20, v = 2^20, and l = 2^10

IETF 113 | CoRE WG | 2022-03-25 | Page 19

› Updated table of ‘q’, ‘v’ and ‘l’ for AES_128_CCM_8

– Added new value for ‘v’, still leaving CA and IA less than 2^-50

– Is it ideal to aim for CA & IA close to 2^-50 as defined in the CRFG document?

Key limits (3/3)

IETF 113 | CoRE WG | 2022-03-25 | Page 20

“Long-Jumping”

IETF 113 | CoRE WG | 2022-03-25 | Page 21

“Skipping”

