Key Update for OSCORE (KUDOS)

draft-ietf-core-oscore-key-update-01

Rikard Hoglund, RISE
Marco Tiloca, RISE

IETF 113, CoRE WG, March 25, 2022

Content Recap

» OSCORE (RFC8613) uses AEAD algorithms to provide security
— Need to follow limits in number of encryptions and failed decryptions, before rekeying
— Excessive use of the same key can enable breaking security properties of the AEAD algorithm*

» (1) AEAD Key Usage Limits in OSCORE
— Defining appropriate limits for OSCORE, for a variety of algorithms
— Defining counters for key usage; message processing details; steps when limits are reached
— Now recommends (q, v, I) = (2720, 2*14, 278) for AES 128 CCM 8; details in Appendix A

» (2) Defined Key Update for OSCORE (KUDOS) «— MAIN FOCUS OF TODAY
— Loosely inspired by Appendix B.2 of OSCORE
— Goal: Renew the Master Secret and Master Salt; derive new Sender/Recipient keys from those
— Achieves Forward Secrecy
*See also draft-irtf-cfrg-aead-limits-03

IETF 113 | CORE WG | 2022-03-25 | Page 2

Key Update Recap

» Method for rekeying OSCORE
— Key Update for OSCORE (KUDOYS)
— Client and server exchange nonces R1 and R2

— UpdateCtx() function for deriving new OSCORE
Security Context using the nonces

8|12 34567 8 9 12 11 12 13 14| 15 k----- n bytes ----- >
e ¥
lel1lelnlk] n @] e |e|e|e|e]e]|dl] Partial IV (if any) |
+-+-4+-+-+-+-+-+-H---%- - 4424y b ¥
<- 1 byte -» <----- s bytes ------ > |<- 1 byte -> <----- ¥ bytes ---->»
o e ———— - +
| s (if any) | kid context (if any) || = (if any) | id detail (if any) |
T — o oo e +
e +
| kid (if any) ... |
e +

Figure 3: The OSCORE option walue, including 'id detail’

IETF 113 | CORE WG | 2022-03-25 | Page 3

Client-initiated rekeying

Client Server
(initiator) (responder)
Generate R1
CTX 1 =
updatecCtx(R1,
CTX_OLD)
Request #1
Protect with CTX 1 |--------------o---- >
OSCORE Option: CTX 1 =
updateCtx(R1,

CTX_NEW =
updateCtx(R1|R2,

CTX_OLD)

Verify with CTX_NEW

Discard CTX OLD

// The actual key update process ends here.

a-%lag: 1

D Detail: R1

Response #1
OSCORE Option:
d flag: 1

ID Detail: R2

CTX_OLD)
verify with cTX 1
Generate R2
CTX_NEW =

updateCtx(R1|R2,
CTX_OLD)

Protect with CTX_NEW

// The two peers can use the new Security Context CTX_NEW.

Protect with CTX_NEW

Verify with CTX_NEW

Request #2

Verify with CTX_NEW

Discard CTX OLD

Protect with CTX_NEW

Key Update without FS (1/2)

» Added alternative KUDOS mode without Forward Secrecy in Appendix E
— Initially raised on the CoRE mailing list in [1]

— It allows stateless key update on loss of state (e.g., rebooting)
Needed for constrained devices that cannot store information to persistent memory

» Extension to KUDQOS, enabling the selection of a no-FS mode through a new bit ‘p’
— 'p'set to 0 ==> run KUDOS in FS mode (original mode)
Devices capable of writing to persistent memory should initiate the procedure with ‘p’ setto 0
—'p'setto 1 ==> run KUDOS in no-FS mode

> New concepts defined
» Latest Master Secret and Latest Master Salt
From the latest derived OSCORE Security; should be stored on disk by a device capable to do so
» Bootstrap Master Secret & Bootstrap Master Salt
If provisioned they are stored on disk, and they are never changed by the device

IETF 113 | CORE WG | 2022-03-25 | Page 4 [1] https://mailarchive.ietf.org/arch/msg/core/ELOyHXQrP2DQwHx060jnQedvFbY/

https://mailarchive.ietf.org/arch/msg/core/EL0yHxQrP2DQwHxo6ojnQedvFbY/

Key Update without FS (2/2)

> Running KUDOS in no-FS mode

— Before starting KUDOS, the current OSCORE Context CTX_OLD is modified to ensure that
Master Secret = Bootstrap Master Secret ; Master Salt = Bootstrap Master Salt

— Thus forward secrecy is sacrificed, but all other properties of KUDOS remain!
» This mode of KUDOS requires that both peers have Bootstrap Master Secret/Salt

» Agreed downgrading of mode is possible

— If the initiator sets 'p' to 0, the responder might be unable continue (if it cannot write to disk)
Server responder: Return a protected 5.03 error response to Request #1, with 'p' setto 1
Client responder: Send a protected Request #2, with 'p' setto 1
In either case, abort KUDOS

— Then, the initiator may retry with 'p' set to 1, to support the best possible common thing

» Reasonable approach? Comments? Good to move to the draft main body?

IETF 113 | CORE WG | 2022-03-25 | Page 5

Keeping Observations (1/2)

» Scenario description:
1. The client starts an observation Obs1 by sending a request Reql with req_piv X
2. The two peers run KUDOS and reset their Sender Sequence Number (SSN) to O.

3. Later on, while Obsl1 is still ongoing, the client sends a new request Reqg2 also with req_piv X.
This is not necessarily an observation request.

> Problem: A notification sent by the server for Obsl or a response to Req2 would both
cryptographically match against Reql and Req2

> Now Appendix C defines
— A method for “long-jumping"” beyond PIVs already in use for observations (more on next slide)
— A new bit ‘b’ to signal interest in keeping observations
If there is no mutual interest, delete observations after key update

IETF 113 | CORE WG | 2022-03-25 | Page 6

Keeping Observations (2/2)

» "Long-jumping” method
— When wishing to send a first request after a KUDOS execution, the client determines the PIV*
as the highest req_piv among all the ongoing observations.
— The client updates its SSN to be (PIV* + 1)

» Issue: Client needs explicit confirmation from server to remove an ongoing observation
— What if the client cannot get this confirmation?

— A peer maintains a counter EPOCH for each ongoing observation it participates in,
incrementing the EPOCH for every KUDOS execution

— When EPOCH reaches MAX_EPOCH (same for both peers) the associated observation is
deleted by both peers

Comments?

Admit negotiation of
MAX_EPOCH in KUDOS?

» MAX_EPOCH
— Need good default value to recommend

IETF 113 | CORE WG | 2022-03-25 | Page 7

Renew Sender/Recipient IDs (1/3)

» Appendix D defines a method to update peers’ Sender and Recipient IDs
— Based on earlier discussions on mailing list [1][2]

» Properties
— Each peer specifies its own new Recipient ID (similar to EDHOC)
— Accepting to update the Sender/Recipient IDs is optional; explicit confirmation is needed
— This procedure can be embedded in a KUDOS execution or run standalone
— Possible for both client and server to initiate this procedure
— Changing IDs practically triggers derivation of new OSCORE key material
— Must not be done immediately following a reboot (e.g., KUDOS must be run first)

[1] https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9Ql/
[2] https://mailarchive.ietf.org/arch/msg/core/ClwcSFOBUVxDas8BpgTOWY1yQrY/

IETF 113 | CORE WG | 2022-03-25 | Page 8

https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/
https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/

Renew Sender/Recipient IDs (2/3)

» Defined new CoAP Option to carry the desired Recipient ID
— Proposed option number 24 (00011000)
— The option value is the selected new Recipient ID of the message sender
— The peer selects and offers a free Recipient ID for the used ID Context
— Class E option for OSCORE processing

oo e e Fomm e Fomm oo +
| No. | Cc | U | N | R | Name | Format | Length | Default |
oo e e Fomm e Fomm oo +
L								
TED1					Recipient-ID	opaque	©-7	(none)
b1								
t------ e e Fommm o R Fommmmmmm- +
C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

IETF 113 | CORE WG | 2022-03-25 | Page 9

Renew Sender/Recipient IDs (3/3)

Client Server
(initiator) (responder)
CTX A { CTX A {
SID = 1 SID = @
[R> = o]
] ¥
Request #1
Protect |------------ie >
with CTX_A | OSCORE Option: ..., verify
Encrypted Payload { with CTX A

|RecipientID: 42|

Application Payload

Response #1
e Protect
Verify OSCORE Option: ... with CTX_A
with CTX_A Encrypted Payload {

Iﬁééipient—ID: 78|

Application Payload

CTX B { CcTX B {
SID = 78 SID = 42
RID - 42] RID = 78
]

] ¥

IETF 113 | CORE WG | 2022-03-25 | Page 10

Renew Sender/Recipient IDs (3/3)

(in

Protect
with CTX_A

Verify
with CTX_A

CTX B {
SID = 78

RID = 42|

Client Server

itiator) (responder)
CTX A {
SID

Request #1

OSCORE Option: ..., [kid:1]

Encrypted Payload {

|RecipientID: d2|

Application Payload

Response #1

OSCORE Option:
Encrypted Payload {

|éééipient—ID: 78|

Application Payload

IETF 113 | CoRE WG | 2022-03-25 | Page 11

(%]
¥

Verify
with CTX A

Protect
with CTX_A

CcTX B {
SID = 42

(in

Protect
with CTX_B

Verify
with CTX B

Discard
CTX A

Protect
with CTX_B

Client server
itiator) (responder)
Request #2
__________________________________ >
OSCORE Option: ..., kid:78 Verify
Encrypted Payload { with CTX B
Application Payload
Response #2
e Protect
OSCORE Option: ... with CTX B
Encrypted Payload {
Application Payload
Request #3
__________________________________ >
OSCORE Option: ..., |kid:78 Verify
Encrypted Payload { with CTX B
Application Payload
Discard
CTX_A

Objections? Alternatives?

Alternatives for signaling

» Currently 3 bits are defined

— "ID Detail F|ag" 'q’ a 11234567 8 9 18 11 12 13 14| 15 k----- n bytes ----- >
B M R e e e e S e e T B L e +
Signals inclusion of ID Detail in OSCORE option I@ 1lelnlk] n e lelefe|e]e]e]d([frPartial IV (if any) |
B e s e T e S e e S e e e e P S e T +
— "No Forward Secrecy", 'p’

<- 1 byte -» <----- s bytes ------ >|<- 1 byte -» <----- ¥ bytes ----»
Signals the use of the no-FS mode R i R PR +
\) v | s (if any) | kid context (if any) || x (if any) | id detail (if any) |
— "Preserve Observations", 'b 4omooosooo o L RS Hozoooooooo #osoooooooooiooonoo +

Signals preservation of CoAP Observations SO R R +

| kid (if any) |

e L TR E T +

H (] %) b H H
> Where to pUt bits ‘b & P and Integrlty prOteCt them? Figure 3: The OSCORE option value, including 'id detail’

— Inthe 1 byte 'x' following 'kid context’, originally
encoding the size of 'id detail'
— Recommended size of nonces R1 & R2 (carried in ‘id
detail’) is 8 bytes > Number of bits available in the 'X'
byte is still sufficient to indicate the size of 'id detail’
updateCtx(R1, CTX OLD) ————» updateCtx(X1|R1, CTX OLD)

— The ‘X’ value is taken_as input in the derivation of the updateCix(RL|R2, CTX OLD) —»updateCix(XL|X2|RL|R2, CTX OLD)
new OSCORE Security Context

Comments?

IETF 113 | CORE WG | 2022-03-25 | Page 12

Summary and next steps

» Latest updates
— Suggested key update without forward secrecy (Appendix E)
— Suggested method for preserving observations across key updates (Appendix C)
— Suggested procedure to update OSCORE Sender/Recipient IDs (Appendix D)
— Proposed alternative placement for signaling bits
— Improvements in message processing
— Optional storing optimization for ‘count_q’ (Appendix B)

» Address open points and issues — Feedback is welcome!
— Improve the suggestions above, move to document body
— Clarify which KUDOS messages can contain actionable payload

» Implementation
— To build on existing implementation of OSCORE in Java Californium

IETF 113 | CORE WG | 2022-03-25 | Page 13

Thank you!

Comments/questions?

https://github.com/core-wg/oscore-key-update

https://github.com/core-wg/oscore-key-update

Key update overview

» Defined a new method for rekeying OSCORE
— Key Update for OSCORE (KUDOQOS)
— Client and server exchange nonces R1 and R2

— UpdateCtx() function for deriving new OSCORE Security
Context using the nonces

» Properties

» Can be initiated by either the client or server

» Completes in one round-trip (after that, the new
Security Context can be used)

Only one intermediate Security Context is derived
The ID Context does not change

Robust and secure against peer rebooting
Compatible with prior key establishment using the
EDHOC protocol

NEW > Mode with PFS (stateful) and without PFS (stateless)
NEW > Possibility to update Recipient/Sender IDs

A A VR VN 4

IETF 113 | CORE WG | 2022-03-25 | Page 15

Client-initiated rekeying

Client server
Generate R1 (initiator) (responder)
CTX 1 =
updatectx(R1,
CTX_OLD)
Request #1
Protect with CTX 1 |------------ommmmm- >
OSCORE Option: CTX 1 =
update(R1,

CTX_NEW =
updateCtx(R1|R2,
CTX_OLD)
Verify with CTX NEW

Discard CTX_OLD

d flag: 1

ID Detail: R1

Response #1
OSCORE Option:

d %lag: 1

ID Detail: R2

CTX_OLD)
verify with CTX_ 1
Generate R2
CTX_NEW =
update(R1|R2,
CTX_OLD)

Protect with CTX_NEW

// The actual key update procedure ends here.
// The two peers can use the new Security Context CTX NEW.

Protect with CTX_NEW

Verify with CTX NEW

Request #2

Verify with CTX NEW

Discard CTX_OLD

Protect with CTX_NEW

OSCORE Option update

» OSCORE Option: defined the use of flag bit 1 to signal presence of flag bits 8-15

» Defined flag bit 15 -- 'd' -- to indicate:
— This is a OSCORE key update message
— "id detail" is specified (length + value); used to transport a nonce for the key update

Bllz2 34567 o 9 18 11 12 13 14) 15||<----- n bytes ----- >
L +
lefl1je|h|k] n | B | B |e|@e@|ee|e]|e| d]| Partial IV (if any) |
L B S e o e e S S e +

<- 1 byte -» <----- s bytes ------ » <- 1 byte ->» {----- X bytes ---->
fomm e T TR e T -
| s (if any) | kid context (if any) || x (if any) | id detail (if any) |
T —— e e L +
T +

| kid (if any) ... |
Fom e e -

Figure 3: The 05CORE option value,

IETF 113 | CORE WG | 2022-03-25 | Page 16

including "id detail’

. . Confidentiality Advantage (CA):
Key I | m |tS (1/3) Probability of breaking
confidentiality properties
> Recap on AEAD limits Integrity Advantage (IA):
— Discussed in draft-irtf-cfrg-aead-limits-03 Probability of breaking
— Limits key use for encryption (g) and invalid decryptions (v) | Integrity properties

1 bl [T

— This draft defines fixed values for ‘q’, ‘v’, and ‘I' and from those calculate CA & IA probabilities
IA & CA probabilities must be acceptably low

> Now explicit size limit of protected data to be sent in a new OSCORE message
— The probabilities are influenced by I’ i.e., maximum message size in cipher blocks
— Implementations should not exceed 'I', and it has to be easy to avoid doing so

— New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding
for a message may not exceed the block size for the selected algorithm multiplied with ‘I

> New table (Figure 3) showing values of ‘I not just in cipher blocks but actual bytes

IETF 113 | CoRE WG | 2022-03-25 | Page 17

Key limits (2/3)

» Increased value of ‘I’ (message size in blocks) for algos except AES 128 CCM_8
— Increasing ‘I from 28 to 210 should maintain secure CA and IA probabilities
— draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2*-50

They have added a table in that document with calculated ‘g’ and ‘v’ values

q = 2"20, v = 2720, and | = 2*10

R e e R e +
| Algorithm name | IA probability | CA probability |
R T e e e —e—iooooo S —— |
AEAD_AES_128 CCM	2~-64	2~-66
AEAD_AES_128 GCM	2~-97	2~-89
AEAD_AES_256_GCM	27-97	2~-89
AEAD_CHACHA2@_POLY13@5	2~-73	-
R ettt R e el +

» Intent is to increase 'q’, 'v' and/or 'I' further. Should we?

— Since we are well below 27-50 for CA & IA currently
IETF 113 | CoRE WG | 2022-03-25 | Page 18

Key limits (3/3)

» Updated table of ‘q’, ‘v’ and ‘I for AES_128 CCM 8

— Added new value for ‘v, still leaving CA and IA less than 2*-50
— Is it ideal to aim for CA & IA close to 27-50 as defined in the CRFG document?

2~-44
27-44
2~-44
2"-49

2”~-49

2~-50
2~-50
2~-50

2~-54
2~-54
27-54

+
|
+
|
|
|
|
g=2~15, v=2~15, 1=278 | 2-49
|
l
|
|
|
|
|
+

IETF 113 | CORE WG | 2022-03-25 | Page 19

---------------- e
CA probability || 'q', 'v' and '1' | IA probability | CA probability
---------------- [j==mmmmm i mm e e e
27-70 || q=2~20, v=2720, 1=276 | 2~-44 | 2~-74
2~-80 || g=2~15, v=272e, 1=2"6 | 2~-44 | 2~-84
27-90 || q=2~10@, v=2720, 1=2"6 | 2~-44 | 2~-94
27-70 || q=2720, v=2715, 1=276 | 27-49 | 2~-74
27-80 || g=2715, v=2715, 1=276 | 2~-49 | 2~-84
27-90 || g=2~10, v=2~15, 1=276 | 2~-49 | 2~-94
27-70|¢mmmmmm || [g=2"20, v=2"14, 1=2"6 | 2"-50 | 2~-74
27-80 || lg=2~15, v=2714, 1=276 | 2~-50 | 2~-84
27-90 || lg=2~10, v=2714, 1=276 | 2~-50 | 2~-94
27-70 || g=2~20, v=2~1@, 1=2"6 | 2~-54 | 2~-74
27-80 || g=2~15, v=2~1@, 1=276 | 2~-54 | 2~-84
27-90 || g=2*10, v=2~1e, 1=2"6 | 2~-54 | 27-94

———————————————— e g

CLIENT SERVER
| |

SSN « 567 | | SSN « 123
o L . J) | |
O n - u I I l I n | Reql (start Obsl) |
e S e T S >|
| Observe: © |
| OSCORE: ... , PIV: 567 |
| |
SSN - 568 |
|
Cecssanssssnsascasasassnsnasnaaacas |
Observe: @

SSN = 124
€ececeomcencoccncanmcaccacacaccannns |
Observe: 1 |
OSCORE: ... , PIV: 124 |
|
| SSN = 125
|
// Perform key update with KuDOS
// The client wishes to send a request.
/f PIV® = 587 ==> 55N = 568
| |
SSN - 568 | | SSH - @
| Regq2 |
fomm e e >
OSCORE: ... , PIV: 568 |
|
SSN = 569 |
|

-
'
'
'
'
'
v
'
'
'
'
'
'
.
'
'
'
'
'
'
'
'
’
'
'
'
'
)
'
'
'
'
'
'
'

IETF 113 | CoRE WG | 2022-03-25 | Page 20

CLIENT SERVER CLIENT SERVER
| | . .
S5N = 567 | | S5H = 123 // The 1list L = {567} does not contain 1
o . .) ! I
| Reql (start Obsi) I | |
e L L e L L ELTEEEEEEE ¥ |s============c==s==cc=s=s=c====c-= >
Obsarve: @		OSCORE: ... , PIV: 1
OSCORE: ... , PIV: 567		
	SSN = 2	
SSN = 568	I [
	e	
:<N“me """""""""""" :	OSCORE: ...	
OSCORE: ... , PIV: 123	I	
	S5N = 124 o	
1 I // The list L = {567} does not contain 566		
tmme=mmmssomosoosoooo oo oo		
Ohsarve: 1	SSN = 566	
OSCORE: ... , PIV: 124 i		
	e >	
	SEH = 125	OSCORE: ... , PIV: 566
SSN = 567		
D I		
@es==s=s=====cs=s=ccces=ccs==ccs==-		
{f Perform key update with KUDDS	OSCORE: ...	
The client builds the list L - {567		
5 e {=67) // The list L = {567} contains 567		
I I [/ SSN++ ==> SSN = 568		
SEN = @ [55N = @ // The list L = {567} does not contain 568	
/f The list L = {567} does not contain @		
SSN = 568		
	I	
[*		s============cs=s==cc=s=s=cs===c-= >
OSCORE: ... , PIV: @		OSCORE: ... , PIV: 568
SSN = 1 : : SSN = 569		
IETF 113	COoRE WG	2022-03-25
o -03- age :		
		Pag

