One-way Delay Measurement Based on Reference Delay

draft-lyy-detnet-ref-delay-measurement-00

Presenter: Kehan Yao (China mobile)

Backgound

•End-to-end one-way delay (OWD) measurement

- E2E OWD is an important performance indicator for SLA guarantee
- E2E OWD measurement is of great significance
- •An example: HD video surveillance service scenario in 5G network
 - The end-to-end one-way delay is the sum of T1+T2+T3+T4

Figure 1:A Scenario for End-to-end One-way Delay

Introduction

- •Existing methods
 - End-to-end deployment of accurate clock synchronization, such as PTP or GPS; but the deployment cost is high.
 - Round-trip delay (RTT) is used to estimate end-to-end one-way delay; Due to the delay asymmetry of the uplink and downlink, the accuracy is low.

•A new method

- This document introduces a new method to accurately measure end-to-end one-way delay using reference delay without deploying clock synchronization.
- Reference delay is bounded and has low jitter. An example for reference delay can be found in deterministic networking[RFC8655].

Network Topology

- •Sender to Receiver Network:
 - End-to-end one-way delay from the sender to the receiver is measured.
 - Intermediate devices other than the sender and receiver are hidden for simplicity.
- •Clock Offset
 - The sender and receiver do not deploy time synchronization.
 - the time deviation between the sender and receiver is the clock offset.

Figure 2: Topology of One-way Delay Measurement

Packets Sent and Timestamps

•Reference Packet:

- The E2E one-way delay for reference pkt is stable and bounded, denoted as Dref.
- •Target Packet:
 - The E2E one-way delay for target pkt is the measurement target, denoted as Dtarget.
- •Timestamping:
 - We timestamp reference and target pkt on the sender and receiver side respectively, denoted as Ts1, Ts2, Tr1 and Tr2.

Figure 2: Topology of One-way Delay Measurement

Proposed OWD Calculation Method

•For reference packet and target packet, we can get Equation 1 and Equation 2, respectively.

$$Tr1 - Ts1 = Dref + Offset1$$
(1)
$$Tr2 - Ts2 = Dtarget + Offset2$$
(2)

•When sending time interval between reference and target pkt is small, Offset1 = Offset2.

•(Equation 2 – Equation 1), we get Equation 3. Now we can calculate Dtarget.

Dtarget = (Tr2 + Ts1) - (Tr1 + Ts2) + Dref (3)

Figure 2: Topology of One-way Delay Measurement

Detailed Measurement Procedures

Sender Side Procedures for both Reference and Target Packet:

+	-+	+		-+	+		-+ +	+
Sender	1	Sender	Side	1	Sender	Side	1 1	Sending
Ready	+>	+Timesta	amping	g+>	+Encapsu	latior	n+>+	Packet
1	1	1		1	1			1
+	-+	+		-+	+		-+ +	+

Receiver Side Procedures for Reference Packet:

Receiver Side Procedures for Target Packet:

Figure 3: Measurement steps for Sender and Receiver Respectively

Packet Header Format

Figure 4: Format of Reference or Target Packet

The sender encapsulates timestamp information and sender-receiver pair information in the Measurement Header of the sent packet.
The position of the Measurement Header is in the option field of the TCP protocol header.

Measurement Header Format in Detail

Figure 5: Detailed Measurement Header Format

•The Kind value can be 253 or 254, and the Length value is 8, which is in accordance with TCP option [RFC4727].

•The sender ID is one octet, and the receiver ID is also one octet.

•The sender side timestamp is 4 octets, which can store accurate timestamp information.

Advantages

•No need to deploy time synchronization

• There is no need to deploy end-to-end accurate time synchronization, which reduces the deployment cost of accurate one-way delay measurement.

•No impact on intermediate network devices

• Leveraging reference delay for assistance, only time stamping is required at the sender and receiver. So there is no extra configuration for intermediate network devices.

Next steps

- •Detailed analysis on the acquisition of reference delay.
- •Consider about security issues.
- •More things to be done. You are also welcome to join our work!

Thanks!