

## Bundle Protocol Version 7 Administrative Record Types Registry

**IETF 113 DTN WG** 

### **Need For this Updating Document**

- RFC9171 defines an explicit table of Administrative Record Types code points.
- There is a pre-existing IANA sub-registry of BPv6 Admin. Record Types.
  - The IANA table was missing the CCSDS Aggregate Custody Signal allocation.
- Other pre-existing IANA sub-registries with BPv6-7 overlap were updated to include a "Bundle Protocol Version" column, which disambiguates and allows for overlapping registrations.
- This proposed document updates the Admin. Record Types subregistry to be similar to the others with BPv6-7 overlap.
  - It makes an explicit reservation of code point zero.
  - It adds a high-valued reservation for private or experimental use in the 32-bitencoded range. This leaves the full 16-bit space available for BPv7 use.
- No change is made to the "Specification Required" registration procedure.

### What the Changes Look Like

|           | +                          | +                                         | +              |                                                | L                                       |                                         |  |
|-----------|----------------------------|-------------------------------------------|----------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|--|
|           | Bundle Protoco             | ndle Protocol   Value<br>rsion  <br>7   0 |                | Description                                    |                                         | Reference                               |  |
|           | 6,7<br>                    |                                           |                | Reserved [R                                    |                                         | C7116] [This  <br>cification]           |  |
|           | 6,7<br>                    |                                           | B<br>  r       | undle status<br>eport                          | [ <u>RFC5050]</u><br>[ <u>RFC9171</u> ] |                                         |  |
|           | 6                          | 2                                         | Custody signal |                                                | [ <u>RFC5050</u> ]                      |                                         |  |
|           | 6,7                        | 3                                         | U              | nassigned                                      | [ <u>CCSDS-BP</u> ]                     |                                         |  |
|           | 6                          | 4                                         | A<br>  C       | ggregate<br>ustody Signal                      |                                         |                                         |  |
|           | 6,7<br>+                   | 5-15<br>+                                 | +<br>  U<br>+  | Unassigned                                     |                                         |                                         |  |
| +=        | Bundle Protocol<br>Version | Value                                     | ===-           | Description                                    |                                         | Reference                               |  |
| +=        | 7   16-65535               |                                           | ===-           | Unassigned                                     |                                         | -====================================== |  |
| 7  gr<br> |                            | greater<br>than 655                       | 35             | Reserved for<br>Private or<br>Experimental Use |                                         | This<br>specification                   |  |
| +-        |                            |                                           |                | +                                              |                                         |                                         |  |



APL

- Requesting the DTN WG to adopt this document.
- This would eventually be in a cluster with the ACME document registering the new code point.
- The BIBE document would also eventually need code points.





# **BPSec COSE Context**

### **IETF 113 DTN WG**

### Background

- BPSec and its Default Security Context are usable but intentionally limited in scope:
  - A limited number of symmetric-keyed encryption and MAC algorithms.
  - Defines a variable additional authenticated data (AAD) binding to the block/bundle.
  - No explicit key identifiers are available.
- For internet-facing nodes, possibly as subnetwork gateways, there is a need for PKI-integrated security.
  - This was indicated by IETF SECDIR review of BPSec draft and also discussed as a near-future need by NASA DTN planning group.
- Don't want to reinvent the wheel, and CBOR Object Signing and Encryption (COSE) already provides syntax and semantics for current and future PKI security.
  - Even COSE (with a restricted profile as used here) still provides a lot of variability, in the same sense that TLS or S/MIME does, which must be managed out-of-band (e.g. don't use ECC algorithms if security acceptors can't support it).



### **Goals for the BPSec COSE Context**

- Do not alter BPSec structures or requirements.
  - This is purely an extension within the existing security context mechanism.
- Handle current symmetric-keyed and PKIX algorithms.
  - Leverage existing algorithm definitions.
- Follow algorithm-use and key-use best practices.
  - Avoid key overuse, use random content encryption keys.
  - Allow Diffie-Hellman static-ephemeral algorithms to be used (both Elliptic and Edwards curves).
- Add as little encoded overhead as possible.
- Inherit future gains made by COSE off-the-shelf algorithms.
  - Planning is already underway for hybrid public key encryption (HPKE) and post-quantum cryptography (PQC).



### **Proposed COSE Context Contents**

- One BPSec context codepoint defined to use in BIB and BCB.
- Parameter and result types defined for each BPSec block type:
  - AAD scope parameter (same semantics as Default SC)
  - De-duplicated last-layer COSE header parameters.
  - Integrity results (COSE MAC and Signature)
  - Confidentiality results (COSE Encrypt using AEAD)
- Public keys in context parameters to de-duplicate data.
  - Potential future extensions could provide additional supporting data (e.g. OCSP stapling).
- Full COSE messages contained in each target's result.
  - Reuse COSE message tags as result type codes.
  - Allows an application to use any current or future COSE algorithm types (and combinations).
  - Allows multiple recipients for a single security block (both BIB and BCB).
  - Interoperability requirements are defined in a COSE Profile (next slide).

## **Interoperability Profile**

- Required algorithms for AES-GCM-256, AES key-wrap, and HMAC-SHA2-256.
- Recommended algorithms for Elliptic Curve, Edwards Curve, and RSA signing and key-wrap/key-generation.
- Additional public key material can be included in an "additional header map", applying to all results in the block.

| +===================================== | COSE |                            | Code | Implementation Requirements |
|----------------------------------------|------|----------------------------|------|-----------------------------|
| <br>  Integrity<br>                    | 1    | HMAC<br>256/256            | 5    | Required                    |
| Integrity                              | 1    | ES256                      | -7   | Recommended                 |
| Integrity                              | 1    | EdDSA                      | -8   | Recommended                 |
| Integrity                              | 1    | PS256                      | -37  | Recommended                 |
| Confidentiality                        | 1    | A256GCM                    | 3    | Required                    |
| Confidentiality                        | 2    | A256KW                     | -5   | Required                    |
| Confidentiality                        | 2    | ECDH-ES +<br>A256KW        | -31  | Recommended                 |
| Confidentiality<br>                    | 2    | ECDH-SS +<br>  A256KW      | - 34 | Recommended                 |
| Confidentiality                        | 2    | RSAES-OAEP<br>  w/ SHA-256 | -41  | Recommended                 |

Table 5: Interoperability Algorithms

- This is not intended to replace or supersede existing BPSec interoperability contexts in RFC 9173.
- The point here is to allow BPSec in a PKIX environment in the very near term.
  - COSE is a known quantity with existing coding and processing tools.
  - Identifying bundle security purpose and validation of a Node ID within a PKIX certificate are already defined in RFC 9174.
  - An extension to ACME to automate validation of a Node ID is under review.
- Known changes needed:
  - <u>#10</u> Align AAD encoding with RFC 9173 for consistency.
- Some secondary questions remain, for example:
  - How does a security acceptor handle a BIB signed by a key with a certificate for a different Node ID than the security source? Base BPSec doesn't really deal with identity/authentication logic.
  - Is there a more strict minimum COSE header content? S/MIME makes requirements about full certificate presence, while the current draft allows an "x5t" thumbprint as a placeholder for compact encoding.



# **Bundle Version Identification**

### **IETF 113 DTN WG**

### **Need For this Document**

- RFC 5050 and RFC 9171 define BPv6 and v7 respectively.
- Each encoding places the self-identifying version number in a different location in the message.
  - BPv6 uses a fixed offset and size.
  - BPv7 uses CBOR structure which doesn't place at a fixed offset.
  - Some current tools **assume** that BPv7 version *is* at a fixed offset and size, based on example bundles and spot checks with some bundle producers.
- In some systems and networks there can be a need to identify a byte string as a specific bundle version.
  - This may be for inspection, and not (yet) fully decoding the bundle.
- A trivial mechanism to detect v6 vs. other (assumed v7) was drafted in

https://datatracker.ietf.org/doc/html/draft-sipos-dtn-udpcl-01

- This doesn't actually identify the CBOR-encoded version.
- This doesn't provide any optimization hints for CBOR-encoded bundles.

### **Proposed Mechanism**

- Thankfully, there is no collision between pre-CBOR and CBOR encodings.
  - Also, the pre-CBOR encoding is fully compatible with CBOR uint type.
- Several algorithms possible, depending on agent need.
  - The main requirement is that an agent SHALL NOT assume things about the encoding that are not guaranteed by RFC 9171.
- · General purpose, handle any encoding:
  - 1. Decode the start of the byte string as CBOR.
  - 2. If it's uint type, that value is the version number.
  - 3. If it's array type, then decode the first array item. If that's array type, then decode the first array item. If that's uint type, that value is the version number.
- Optimized 1, can fail for non-deterministic or non-preferred encoding:
  - Perform bit mask and comparison for pattern matching. This is effectively a selective CBOR decoder (for certain encodings).
  - 1. Take first octet, bitwise-AND with 0xE0, and compare to 0x00 to detect v6 and earlier. The octet bitwise-AND with 0x1F is the version number.
  - 2. Take first octet, bitwise-AND with 0xE0, and compare to 0x80 to detect array. Then take next octet, bitwise-AND with 0xE0, and compare to 0x80 to detect array. Then take next octet, bitwise-AND with 0xE0, compare to 0x00 to detect uint. The octet bitwise-AND with 0x1F is the version if it is less than 24.
- Optimized 2, works only for controlled networks where combinations are limited:
  - Compare the input against fixed byte strings as pattern matching.
  - 1. 0x06 is a v6 bundle
  - 2. 0x9F8B07 is a v7 bundle, indefinite framing, non-fragmented, with CRC ... and so on with the other possible variations.

- Creating a real draft Informational document for this purpose.
- Requesting WG review of the logic and content of the draft.





# **UDPCL Standardization**

### **IETF 113 DTN WG**

### **Need For this Document**

- RFC 7122 gives a brief explanation of BP-over-UDP.
- This explanation has unspecified or weak areas:
  - Makes no mention of IP addressing or relationships of unicast or multicast IP.
  - Allocation of a UDP port is made but no explanation of how the single port number must be used, or how it should relate to things like firewalls or NATs.
  - No explanation of constraints related to UDP itself. New protocols have <u>BCP</u>
    <u>145</u> "UDP Usage Guidelines" to conform to.
  - Assumes that bundle fragmentation is able to handle all situations of content larger than the path MTU.
  - Assumes that the path MTU is *a priori* known or configured.
- There are BP users already needing a fully defined UDPCL.
  - The <u>Draft LunaNet Interoperability Specification</u> mentions the UDPCL in a way that assumes it exists, or will exist, as a standard.



### **Goals for UDPCLbis**

- Maintain backward compatibility: one bundle—one datagram
  - Allow existing implementations to be adapted.
  - Other proposed document for *Bundle Version Identification* would allow BPv6 be kept for full backward compatibility.
- Improve unspecified or weak areas:
  - Defines how unicast and multicast IP are to be used.
  - Make specific UDP port requirements and overall usage requirements.
  - Handle bundles which are barely larger than the path MTU.
- Add long-term extensibility and interoperable CL security:
  - Provide a place to put extensions, keeping the overall send-and-forget strategy
- Further areas for improvement:
  - Bundle packing within a single datagram? This could improve efficiencies for certain workflows.
  - Can a UDP conversation be bidirectional? A "polling" conversation would allow NAT traversal.

- Requesting WG review of the clarifications, especially relative to current implementations, in <u>https://www.ietf.org/archive/id/draft-</u> <u>sipos-dtn-udpcl-01.html</u>
- Bring the draft into alignment with RFC 9174 document structure and editor changes.
- Handle issues documented at <u>https://github.com/BrianSipos/dtn-bpbis-udpcl/issues</u>

