

I2NSF YANG Data Model Comparison

draft-ietf-i2nsf-consumer-facing-interface-dm-17
draft-ietf-i2nsf-nsf-facing-interface-dm-22

IETF 113, Vienna
March 24th, 2022

Jaehoon (Paul) Jeong and Patrick Lingga
{pauljeong, patricklink}@skku.edu
Sungkyunkwan University

I2NSF Framework

I2NSF Framework – Consumer-Facing Interface and NSF-Facing Interface

Objectives of Consumer-Facing Interface and NSF-Facing Interface (1/2)

- **Consumer-Facing Interface (CFI):**

- It is assumed that vendors also provide front-end web applications to an I2NSF User.
- The Consumer-Facing Interface is required because the web applications developed by each vendor need to have a standard interface specifying the data types used when the I2NSF User and Security Controller communicate with each other using this interface.
- Therefore, Consumer-Facing Interface document specifies the required information, their data types, and encoding schemes so that high-level security policies (or configuration information for security policies) can be transferred to the Security Controller through the Consumer-Facing Interface.
- These high-level policies can be translated into low-level security policies by the Security Controller.

Objectives of Consumer-Facing Interface and NSF-Facing Interface (2/2)

- **NSF-Facing Interface (NFI):**

- The NSF-Facing Interface focuses on providing security policy configuration for the NSFs as a low-level policy that can be used by the NSFs to deploy security services.
- The Security Controller delivers the translated low-level policies to Network Security Functions (NSFs) according to their respective security capabilities for the required security enforcement.
- The data model provides Access Control Lists (ACLs), i.e., a generic NSF (operate on packet header for layer 2, layer3, and layer 4), and an advanced NSF (Intrusion Prevention System, URL-Filtering, anti-DDoS, Antivirus, and Voice over Internet Protocol (VoIP) or Voice over Cellular Network (VoCN) Filter).
- The ACLs provided in the NSF-Facing Interface YANG data model is imported from RFC 8519 (YANG Data Model for Network Access Control Lists (ACLs)).

Top-Level YANG Tree Comparison

Consumer-Facing Interface (CFI) :

```
module: ietf-i2nsf-cfi-policy
  +-rw i2nsf-cfi-policy* [name]
    +-rw name                  string
    +-rw language?             string
    +-rw resolution-strategy? identityref
    +-rw rules* [name]
    |   ...
    +-rw endpoint-groups
    |   ...
    +-rw threat-prevention
    |   ...
    |   ...
```

NSF-Facing Interface (NFI):

```
module: ietf-i2nsf-policy-rule-for-nsf
  +--rw i2nsf-security-policy* [name]
    +--rw name                      string
    +--rw language?                 string
    +--rw priority-usage?          identityref
    +--rw resolution-strategy?    identityref
    +--rw default-action?          identityref
    +--rw rules* [name]
    |   ...
    +--rw rule-group
```

- The top-level CFI and NFI YANG data model provide the **language-tag** and **resolution-strategy**.
- **default action** and **priority usage** are not provided in CFI YANG data model.
 - **Reason:** The Security Policy Translator can set these both default action and priority usage to the low-level security policy.
 - **Philosophy of CFI:** To make CFI as simple as possible.
- In CFI, **endpoint groups** and **threat prevention** are used to register information (e.g., mapping a user to an IP address) with the database for high-level configuration.
 - **endpoint groups:** user-group, device-group, location-group, and url-group
 - **threat prevention:** threat-feed-list and payload-content

Rule-Level YANG Tree Comparison

Consumer-Facing Interface (CFI) :

```
+--rw rules* [name]
  |   +-rw name          string
  |   +-rw priority?    uint8
  |   +-rw event
  |   |
  |   |   ...
  |   +-rw condition
  |   |
  |   |   ...
  |   +-rw action
  |
  |   ...
```

NSF-Facing Interface (NFI):

- The CFI and NFI data model use the **Event-Condition-Action (ECA) policy rule** with priority for the rule is provided in both YANG data model.
- **long-connection** (i.e., a connection that is maintained after the socket connection is established) is provided in NFI to handle stateful network service.
 - **Reason:** The Security Policy Translator can set this **long-connection** to the low-level security policy.
 - **Philosophy of CFI:** To make CFI as simple as possible.
- The contents of the ECA is different for CFI and NFI data model as shown in the next slides.

Event YANG Tree Comparison

Consumer-Facing Interface (CFI) :

```
| +-rw event
| | +-rw system-event* identityref
| | +-rw system-alarm* identityref
```

NSF-Facing Interface (NFI) :

```
| +-rw event
| | +-rw description? string
| | +-rw system-event* identityref
| | +-rw system-alarm* identityref
```

- CFI and NFI have **the almost same structures for Event** except for description in NFI.
 - description is optional because it contains human-readable text for the description of an event.
- System Event: Access Violation and Configuration Change
- System Alarm: Memory, CPU, Disk, Hardware, and Interface Alarm

Condition YANG Tree Comparison – Layers 2, 3, and 4 (1/2)

Consumer-Facing Interface (CFI) :

```
++-rw condition
| +-rw firewall
| | +-rw source*      union (user-group or device-group name)
| | +-rw destination* union (user-group or device-group name)
| | +-rw transport-layer-protocol?  identityref
| | +-rw range-port-number
| | | +-rw start-port-number?    inet:port-number
| | | +-rw end-port-number?    inet:port-number
| | | +-rw icmp
| | | | +-rw message*    identityref

+-rw endpoint-groups
| +-rw user-group* [name]
| | +-rw name          string
| | +-rw mac-address* yang:mac-address
| | +-rw (match-type)
| | | +-:(range-match-ipv4)
| | | | +-rw range-ipv4-address
| | | | | +-rw start-ipv4-address  inet:ipv4-address-no-zone
| | | | | +-rw end-ipv4-address   inet:ipv4-address-no-zone
| | | +-:(range-match-ipv6)
| | | | +-rw range-ipv6-address
| | | | | +-rw start-ipv6-address  inet:ipv6-address-no-zone
| | | | | +-rw end-ipv6-address   inet:ipv6-address-no-zone
| +-rw device-group* [name]
| | +-rw name          string
| | +-rw (match-type)
| | | +-:(range-match-ipv4)
| | | | +-rw range-ipv4-address
| | | | | +-rw start-ipv4-address  inet:ipv4-address-no-zone
| | | | | +-rw end-ipv4-address   inet:ipv4-address-no-zone
| | | +-:(range-match-ipv6)
| | | | +-rw range-ipv6-address
| | | | | +-rw start-ipv6-address  inet:ipv6-address-no-zone
| | | | | +-rw end-ipv6-address   inet:ipv6-address-no-zone
| +-rw application-protocol* identityref
```

NSF-Facing Interface (NFI):

Condition YANG Tree Comparison – Layers 2, 3, and 4 (2/2)

- CFI aims at [an easy security policy configuration](#).
 - CFI YANG data model provides [a way to save IP addresses of user/device into a database](#) to be used for easy configuration of ACLs.
 - [Some elements in an NFI security policy](#) are handled by [Security Policy Translator](#).
- In CFI YANG data model, the firewall condition (Access Control Lists (ACLs)) consists of
 - Source and destination MAC addresses,
 - Source and destination IP (IPv4 or IPv6) addresses,
 - Type of transport protocol (i.e., TCP, UDP, SCTP, DCCP),
 - Source and destination port numbers,
 - Type of application protocol,
 - ICMP type and code (for ICMPv4 and ICMPv6).
- The NFI YANG data model provides more fields that cover most headers of the protocols (Based on RFC8519 (ACLs) – IP (IPv4 or IPv6)).
 - IPv4 covers DSCP (Differentiated Services Code Point), ECN (Explicit Congestion Notification), length (total length), ttl, protocol, IHL (Internet Header Length), flags, offset, identification, source addresses, and destination addresses fields.
 - IPv6 covers DSCP, ECN, length (Payload Length), ttl (Hop Limit), protocol (Next Header in IPv6), source addresses, and destination addresses fields.
 - TCP covers source ports, destination ports, sequence number, acknowledgement number, data-offset, reserved, flags, window-size, urgent-pointer, and options fields.
 - UDP covers source ports, destination ports, and length fields.
 - SCTP covers source ports, destination ports, chunk type, and chunk length fields.
 - DCCP covers source ports, destination ports, service code, type, and data offset fields.

Condition YANG Tree Comparison – Advanced NSF_s: DDoS, Antivirus, Payload (DPI), URL Filtering, Voice Filtering (1/3)

Consumer-Facing Interface (CFI) :

```
+--rw condition
| ...
| +-rw ddos
| | +-rw rate-limit
| | | +-rw packet-rate-threshold? uint64
| | | +-rw byte-rate-threshold? uint64
| | | +-rw flow-rate-threshold? uint64
| +-rw anti-virus
| | +-rw exception-files* string
| +-rw payload
| | +-rw content*
-> /i2nsf-cfi-policy/threat-prevention/payload-content/name
| +-rw url-category
| | +-rw url-name?
| | -> /i2nsf-cfi-policy/endpoint-groups/url-group/name
| +-rw voice
| | +-rw source-id* string
| | +-rw destination-id* string
| | +-rw user-agent* string
| +-rw threat-feed
| | +-rw name*
-> /i2nsf-cfi-policy/threat-prevention/threat-feed-list/name

+-rw threat-prevention
| +-rw threat-feed-list* [name]
| | +-rw name string
| | +-rw description? string
| | +-rw signatures* identityref
| +-rw payload-content* [name]
| | +-rw name string
| | +-rw description? string
| | +-rw content* binary

+-rw endpoint-groups
| +-rw url-group* [name]
| | +-rw name string
| | +-rw url* string
```

NSF-Facing Interface (NFI) :

```
+--rw condition
| ...
| | +-rw ddos
| | | +-rw description? string
| | | +-rw alert-packet-rate? uint32
| | | +-rw alert-flow-rate? uint32
| | | +-rw alert-byte-rate? uint32
| +-rw anti-virus
| | +-rw profile* string
| | +-rw exception-files* string
| +-rw payload
| | +-rw description? string
| | +-rw content* binary
| +-rw url-category
| | +-rw description? string
| | +-rw pre-defined* string
| | +-rw user-defined* string
| +-rw voice
| | +-rw description? string
| | +-rw source-voice-id* string
| | +-rw destination-voice-id* string
| | +-rw user-agent* string
```

■ Note

- The registration of a pair of (name, value) for a condition in CFI needs to be done to Security Controller by CFI YANG data model.
- With this, Security Policy Translator can perform a policy translation. 11

Condition YANG Tree Comparison – Advanced NSFs: DDoS, Antivirus, Payload (DPI), URL Filtering, Voice Filtering (2/3)

- The CFI and NFI YANG data models are similar for DDoS, Antivirus, Payload (DPI), URL Filtering, and Voice Filtering conditions.
- The difference is that in CFI some of the information (name, value) for configuration is saved into a database in Security Controller for easy configuration.
- The configuration can be done by using the key **name** that holds the corresponding **value**.
- The registration for the database can be done with the following **Xpath** (i.e., used to navigate through elements in an XML document):
 - /i2nsf-cfi-policy/**threat-prevention/payload-content/name**
 - /i2nsf-cfi-policy/**endpoint-groups/url-group/name**
 - /i2nsf-cfi-policy/**threat-prevention/threat-feed-list/name**

Condition YANG Tree Comparison – Advanced NSFs: DDoS, Antivirus, Payload (DPI), URL Filtering, Voice Filtering (3/3)

- XML Example of the registration for the database with XPath:

```
<i2nsf-cfi-policy
  xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-cfi-policy">
    <name>security_policy_for_blocking_sns</name>
    <endpoint-groups>
      <user-group>
        <name>employees</name>
        <range-ipv4-address>
          <start-ipv4-address>192.0.2.11</start-ipv4-address>
          <end-ipv4-address>192.0.2.90</end-ipv4-address>
        </range-ipv4-address>
      </user-group>
      <device-group>
        <name>webservers</name>
        <range-ipv4-address>
          <start-ipv4-address>198.51.100.11</start-ipv4-address>
          <end-ipv4-address>198.51.100.20</end-ipv4-address>
        </range-ipv4-address>
        <application-protocol>nsfcfi:http</application-protocol>
        <application-protocol>nsfcfi:https</application-protocol>
      </device-group>
      <url-group>
        <name>sns-websites</name>
        <url>example1.com</url>
        <url>example2.com</url>
      </url-group>
    </endpoint-groups>
  </i2nsf-cfi-policy>
```

Condition YANG Tree Comparison – Context (1/3)

Consumer-Facing Interface (CFI) :

```
| | +-rw context
| | | +-rw time
| | | | +-rw start-date-time? yang:date-and-time
| | | | +-rw end-date-time? yang:date-and-time
| | | +-rw period
| | | | +-rw start-time? time
| | | | +-rw end-time? time
| | | | | +-rw day* day
| | | | | +-rw date* int8
| | | | | +-rw month* string
| | | | +-rw frequency? enumeration
| | +-rw application
| | | +-rw protocol* identityref
| | +-rw device-type
| | | +-rw device* identityref
| +-rw users
| | +-rw user* [id]
| | | +-rw id uint32
| | | +-rw name? string
| | +-rw group* [id]
| | | +-rw id uint32
| | | +-rw name? string
```

NSF-Facing Interface (NFI) :

```
| | | +-rw context
| | | | +-rw description? string
| | | | +-rw time
| | | | | +-rw start-date-time? yang:date-and-time
| | | | | +-rw end-date-time? yang:date-and-time
| | | | +-rw period
| | | | | +-rw start-time? time
| | | | | +-rw end-time? time
| | | | | | +-rw day* day
| | | | | | +-rw date* int8
| | | | | | +-rw month* string
| | | | | +-rw frequency? enumeration
| | | +-rw application
| | | | +-rw description? string
| | | | +-rw protocol* identityref
| | | +-rw device-type
| | | | +-rw description? string
| | | | +-rw device* identityref
| | +-rw users
| | | +-rw description? string
| | | +-rw user* [id]
| | | | +-rw id uint32
| | | | +-rw name? string
| | | +-rw group* [id]
| | | | +-rw id uint32
| | | | +-rw name? string
```

■ Note

- **context** contains extra information for filtering.
- The contents of **context** in CFI are the same with those of **context** in NFI except the element of “**description**” in NFI.

Condition YANG Tree Comparison – Context (2/3)

Consumer-Facing Interface (CFI) :

```
| | +-rw context
| | |
| | | ...
| | | +-rw geographic-location
| | | |
| | | | +-rw source*
| | | |
| | | | -> /i2nsf-cfi-policy/endpoint-groups/location-group/name
| | | |
| | | | +-rw destination*
| | | |
| | | | -> /i2nsf-cfi-policy/endpoint-groups/location-group/name
```

```
+-rw endpoint-groups
| +-rw location-group* [name]
| |
| | +-rw name string
| | +-rw geo-ip-ipv4* [ipv4-address]
| | |
| | | +-rw ipv4-address inet:ipv4-address-no-zone
| | | +-rw ipv4-prefix? inet:ipv4-prefix
| | +-rw geo-ip-ipv6* [ipv6-address]
| | |
| | | +-rw ipv6-address inet:ipv6-address-no-zone
| | | +-rw ipv6-prefix? inet:ipv6-prefix
| | +-rw continent? identityref
```

NSF-Facing Interface (NFI) :

```
| | +-rw context
| | |
| | | ...
| | | +-rw geographic-location
| | | |
| | | | +-rw description? string
| | | |
| | | | +-rw source* string
| | | |
| | | | +-rw destination* string
```

■ Note

- The registration of a pair of (name, value) for a condition in CFI needs to be done to Security Controller by CFI YANG data model.
- With this, Security Policy Translator can perform a policy translation.

Condition YANG Tree Comparison – Context (3/3)

- The YANG data model in CFI has **context condition** that can be one-to-one mapped **context** in NFI.
- CFI and NFI YANG data models provide **time condition** to define the active period of a rule.
- CFI and NFI YANG data models provide **geographic location condition** to filter traffic from/to a certain region. This can be mapped into the source and destination IP (IPv4 or IPv6) addresses based on the database provided.
- CFI provides the **registration of IP (IPv4 or IPv6) addresses to the database** with `/i2nsf-cfi-policy/endpoint-groups/location-group/name`

Action YANG Tree Comparison (1/2)

Consumer-Facing Interface (CFI) :

```
+--rw action
  |  +-rw primary-action
  |  |  +-rw action?  identityref
  |  +-rw secondary-action
  |  |  +-rw log-action?  identityref
Primary action: Ingress and Egress action
Secondary action: Log action
```

NSF-Facing Interface (NFI) :

```
  |  +-rw action
  |  |  +-rw description?  string
  |  |  +-rw packet-action
  |  |  |  +-rw ingress-action?  identityref
  |  |  |  +-rw egress-action?  identityref
  |  |  |  +-rw log-action?  identityref
  |  +-rw flow-action
  |  |  +-rw ingress-action?  identityref
  |  |  +-rw egress-action?  identityref
  |  |  +-rw log-action?  identityref
  |  +-rw advanced-action
  |  |  +-rw content-security-control*  identityref
  |  |  +-rw attack-mitigation-control*  identityref
```

- The **action** in CFI YANG data model is separated into **primary-action** and **secondary-action**. Primary action is Ingress and Egress action (i.e., pass, drop, reject, rate-limit, mirror, invoke-signaling, tunnel-encapsulation, forwarding, and transformation)
- In NFI YANG data model, the **advanced action** is used to activate the **Service Function Chaining (SFC)** to apply multiple NSFs on network traffics. This does not exist in CFI as the CFI is used to provide a high-level action.
 - The action of a certain policy (e.g., a URL filtering with firewall) in CFI may require multiple NSFs.
 - The SFC of those NSFs is handled by NFI.

Action YANG Tree Comparison (2/2)

```
<i2nsf-cfi-policy
  xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-cfi-policy">
  <name>security_policy_for_blocking sns</name>
  <rules>
    <name>block_access_to sns_during_office_hours</name>
    <condition>
      <firewall-condition>
        <source>employees</source>
      </firewall-condition>
      <url-condition>
        <url-name>sns-websites</url-name>
      </url-condition>
      <context>
        <time>
          <start-date-time>2021-03-11T09:00:00.00Z</start-date-time>
          <end-date-time>2021-12-31T18:00:00.00Z</end-date-time>
          <period>
            <start-time>09:00:00Z</start-time>
            <end-time>18:00:00Z</end-time>
            <day>monday</day>
            <day>tuesday</day>
            <day>wednesday</day>
            <day>thursday</day>
            <day>friday</day>
          </period>
          <frequency>weekly</frequency>
        </time>
      </context>
    </condition>
    <actions>
      <primary-action>
        <action>nsfcfi:drop</action>
      </primary-action>
    </actions>
  </rules>
</i2nsf-cfi-policy>
```


Conclusion

1. There is no translation problem from a CFI policy to an NFI policy.
 - Security Controller can handle some missing elements in a CFI policy.
2. The CFI YANG data model provides a high-level policy for easy configuration.
 - The YANG data model in CFI provides the registration of a pair (name, value) for easy configuration to be saved into a database.
3. The NFI YANG data model focuses on providing security policy configuration for NSFs as a low-level policy to be understood by them.