Path Steering in CCNx and NDN

a Refresher

draft-oran-icnrg-pathsteering-05
Outline

- Introduction
- Design
- Packet Encoding
- Security Considerations
I. INTRODUCTION
Problem Statement

• ICN communication is inherently multi-path and potentially multi-destination.
• No mechanism for consumers to direct Interest traffic onto a specific path.
 – Forwarding Strategies in ICN forwarders can spray Interests onto various paths
 – Consumers have a hard time interpreting failures and performance glitches
 – Troubleshooting and performance tools need path visibility and control to find problems and do simple measurements.
Motivations for Path Steering

- Discover, monitor and troubleshoot multipath network connectivity based on names and name prefixes:
 - Ping
 - Traceroute
- Accurately measure a performance of a specific network path.
- Multipath Congestion control needs to:
 - Estimate/Count number of available paths
 - Reliably identify a path
 - Allocate traffic to each path
- Traffic Engineering and SDN
 - Externally programmable end-to-end paths for Data Center and Service Provider networks
II. Design
How to label paths?

What is a path label? One or more nexthop IDs

Encoding options:
- Bloom filter
- Pairing function
- Label Stack (similar to MPLS label stack)
- **Fixed size labels** – This is what we chose (see later slide)
Path discovery and steering

Interest$_1$ contains a path label marked as **DiscoveryMode** and is forwarded with LPNM in the FIB
Path discovery and steering

Content₁ carries a path label modified on each hop.
Path discovery and steering

Interest$_2$ has a path label obtained from the earlier returned Data Packet. This a marked as not **DiscoveryMode** and is forwarded with LPNM FIB + nexthop selection.
Advantages

• ICN Ping application can reliably measure path RTT
• ICN Traceroute application can iteratively discover multiple network paths
• Consumer multipath-aware congestion control can discover and distribute load across paths
• Consumer can mitigate content poisoning attacks
• Traffic engineering (TE) and SDN solutions can be built
Route updates

• With path steering, LNPM FIB lookup still used to find the set of nexthops from which the path’ nexthop is chosen.
• If nexthop selection fails:
 – Interest-Return (NACK) carrying a new “Invalid path label” error code
 – or silently forward an Interest through any available nexthop
 – Behavior can be controlled through consumer options on Interests:
 • StrictMode
 • FallbackMode
 • DiscoveryMode
Handling Route updates

- New nexthop label(s) assigned every time FIB entry changes
- On reverse path, Data or NACK is dropped
- On forward path, Interest is NACK’ed
III. Packet Encoding
Additions to CCNx Packet format (RFC8609)

- New Error Code: T_RETURN_INVALID_PATH_LABEL for Interest Return Packet
- New hop-by-hop header TLV: T_PATH_LABEL
- New Registry for Path Label Field TLVs:
 - PATH-LABEL-TYPE
 - PATH-LABEL-BITMAP-TYPE
 - PATH-LABEL-NEXTHOP-LABEL-TYPE
 - PATH-LABEL-HOP-COUNT-TYPE
Proposed NDN Packet encoding

• New NDN Packet TLV: PATH-LABEL
 – Note: define in main NDN Packet spec rather than NDNLPv2 since it is hop-by-hop mutable like the recently introduced HopLimit TLV

• Consists of the following:
 – PATH-LABEL-FIAGS-TYPE TLV-LENGTH ; == 1 OCTET
 – PATH-LABEL-NEXTHOP-LABEL-TYPE TLV-LENGTH ; == 2 2 OCTET
 – PATH-LABEL-HOP-COUNT-TYPE TLV-LENGTH ; == 1 OCTET
 – PATH-LABEL-BITMAP-TYPE TLV-LENGTH ; == 64 64 OCTET
This design allocates 12 bits (i.e. 4095 as a *generator polynomial*) to each intermediate ICN forwarder. This should match the scalability of today's commercial routers that support up to 4096 physical and logical interfaces and usually do not have more than a few hundred active ones.
IV. Security considerations
Malicious mis-steering

Consumer can use probing with Interests to discover path labels and then steer packets over wrong paths or to wrong destinations to mount a DoS attack.

- 12-bit nexthop label requires only average 2^{12} Interests to discover by malicious consumer
- Mitigation: periodically update nexthop labels to limit the maximum lifetime of paths
- To foil divide-and-conquer, use a void Hop Count field in “Invalid path label” Interest-Return (NACK) message
- Path label can be encrypted hop-by-hop on the reverse path
Cache pollution

Malicious consumer & producer can inject an off-path and potentially bogus object in on-path caches.

- **Mitigation:** Cache entries must be annotated with the corresponding path label and only used to satisfy Interests with a matching path label.

- **Mitigation:** Cache entries must not evict entries for the same object with no path label, or a different path label.
Thanks! Questions?