
Reflexive Forwarding for
CCNx and NDN Protocols

https://datatracker.ietf.org/doc/draft-oran-icnrg-reflexive-forwarding/02/

Dave Oran
Dirk Kutscher

ICNRG @ IETF-113

https://datatracker.ietf.org/doc/draft-oran-icnrg-reflexive-forwarding/02/

Motivation

● Many scenarios benefit from ICN’s robust and secure two-
way exchange through INTEREST/DATA

● There are other scenarios though where that is not sufficient
○ RESTful communication, e.g., Web over ICN
○ Remote Method Invocation
○ Phone-home scenarios
○ Peer state synchronization

● Desirable features
○ Pushing Data
○ RESTful-like session continuation

● Our goal: enable these scenarios in an ICN-idiomatic way
○ As a foundation for the scenarios above and more
○ Most relevant (probably): RESTful ICN

Application Layer Interactions

● Web
○ RESTful communications: series of requests in

session context – through representational
state transfer

○ Considerable request sizes: header fields,
cookies, input data (GET, PUT, POST)

● Remote Method Invocation
○ Authentication/authorization info
○ Potentially really large input parameters

– think “map-reduce”

Motivations for multi-way Handshakes
• Remote Method Invocation (RMI, aka RPC)

– Fetch arguments
– Perform authorization
– Separate invocation from results return

• Phone-home for sensor/actuators
– Fetch from gateway rather than push from device
– Eliminate polling

• Peer State Synchronization
– 3-way (or more) handshakes needed to avoid hazards
– Complicated state machines for things needing negotiation (e.g. SIP/SDP)

Requests parameters in INTEREST messages?

INTEREST /A
PIT
/A face1

PIT
/A face1INTEREST /A INTEREST /A

DATA /A

● Large input data – not advisable
○ Flow balance
○ Computional overload attacks (server has to process arbitrary client data…)
○ Extra state on forwarders
○ Potential INTEREST fragmentation

Consumer Node 1 Node 1 Producer

Reverse INTEREST for Parameters to Consumer?

INTEREST /A

DATA /A

Consumer Node 1 Node 1 Producer

INTEREST
/Consumer/P1INTEREST

/Consumer/P1INTEREST
/Consumer/P1

INTEREST /A
INTEREST /A

DATA
/Consumer/P1

DATA
/Consumer/P1 DATA

/Consumer/P1

DATA /A
DATA /A

● Would require consumer identity (disclosure) with routable prefix
○ Not idiomatic in ICN (no source addresses/names)
○ Consumer mobility much harder
○ Potential reflection attacks (consumer can provide arbitrary “paramter prefix”)● Correlating two independent INTEREST/DATA exchange complicates state machine on both sides
○ Catastrophic if done wrong for key exchange

Design Overview
• Utilize forwarder state established by Interest sent from consumer to producer

– Allow for not just a returning Data message, but a Reflexive Interest to flow from
producer to the unique consumer who sent the original Interest

• Define a scheme for Reflexive Name Prefixes
– Can only be seen and understood by already established consumer/producer pairing
– Do not reveal consumer identity (temporary names within the RI context)

• Provide forwarder mechanism for routing these back to consumer from producer

• Couple state of the original Interest/Data exchange with the reflexive exchange(s)
– Ensure state gets mapped correctly by both consumer and producer
– And unwound properly at forwarders when Data message responding to original Interest

is sent back

High-Level Protocol Overview
Consumer ProducerForwarder

I1[P=P1,RNP=X1]

PIT
[P=P1]

RI[P=X1]

I1 State
[RNP=X1]

DR[P=X1]

PIT
[P=X1]

D1

Previous Approach (version 01)
Consumer ProducerForwarder

I1[P=P1,RNP=X1]

PIT
[P=P1]

RI[P=X1]

RFIB
[RNP=X1]

I1 State
[RNP=X1]

DR[P=X1]

PIT
[P=X1]

D1

New Approach (version 02)
• PIT Tokens for reverse forwarding

– Much more efficient PIT lookups
– No special RFIB forwarder requirements

• Forward Direction PIT tokens (FPTs)
– Attached to

• Forwarded Interests in upstream
direction

• Forwarded Reflexive Interests in
downstream direction

• Reverse Direction PIT tokens (RPTs)
– Attached to

• Reflexive Interests in downstream
direction

• Data responses to Interests in both
directions

New Approach (version 02)
Consumer ProducerForwarder

I1[P=P1,RNP=X1]

PIT
[P=P1; RNP=X1]

I2[P=X1, RPT=FPT(I1)]

Add
FPT to I1

I1 State
[RNP=X1]

D2[P=X1]

PIT
[P=X1]

D1

Use RPT(I2) to find PIT of I1,
Checking matching of RNP;

Create I2 PIT entry;
Forward I2

Record
RNP in PIT

Add RPT(I2) and
FPT (I1) to I2

Consuming I2
PIT state

Consuming I1
PIT state Remove

I1 State

Naming of Reflexive Interests
• New Name Component type for CCNx and NDN

– High-order component of any reflexive name, used to form prefix

• Value is a 128-bit random number
– Entropy to uniquely identify the consumer for duration of the exchange
– Different value for each outer exchange limits linkability
– UUID (RFC4122)

• Possible reflexive names that can be constructed:
– A single full name of object to fetch
– Prefix out of which producer/consumer name multiple objects
– Full name of a FLIC Manifest

New Node Behavior
• Consumer, Producers, Forwarders

• Forwarder modifications include PIT Token generation
when receiving INTERESTs with Reflexive name prefix

• All modifications should be doable for high-performance
and standard software-based forwarders

• Details in the draft

CCNx Encoding
Reflexive Name TLV

Hop-by-hop PIT Token TLVs

NDN Encoding
• Reflexive Name Component Type

– Need a new component type (type RNP)
• Reflexive Name Prefix TLV

– RNP ::= | RNP-TYPE | TLV-LENGTH(=16) BYTE8)

• PIT Tokens for NDNLPv2
– Need additional type for reverse PIT token

Current NDNLPv2 PIT Token Proposed Reverse PIT Token

Typical Use Cases
• Remote Method Invocation
• RESTful Web Interactions
• Data Pull from sensors

Remote Method Invocation
(Pioneered by RICE)

• RICE uses (an earlier version of) Reflexive Interests for the
following:
– Retrieve authentication/authorization information from

consumer
– Fetch arguments to method calls

• Completion can be either:
– Immediate through the returning Data message, or
– Deferred to a separate exchange to retrieve results buy utilizing
Thunks.

• Illustrated on following slide

RMI Example
Consumer Producer
I1 to invoke method/RPC

RI1 to fetch argument 1

Fetch arguments with Reflexive
Interests

RD1 with argument 1

D1 with Thunk

RI2 to fetch argument 2

RD2 with argument 2

Commit Resources, return Thunk

I2 with Thunk name to fetch results

Perform ComputationWait awhile…

D2 with Result

RESTful Web Interactions
• Only place RESTful request via the URI in the

initial Interest
• Get all the parameters, including AuthZ with

Reflexive Interests
– Cookies, Accept-foo headers, other HTTP goop

• Return results via regular Data messages

Data Pull from sensors
• Sensor only needs to act as consumer
• Wake up (on timer or event)
• ”Phone Home” to an application gateway or REPO
• This provokes a Reflexive Interest/Data exchange

initiated from the gateway
• Data can either be:
– Packaged/stored by gateway as the authoritative source
– Named, encapsulated and signed by sensor itself

Phone Home Data Pull Example
Sensor Consumer Gateway Producer

I1 Phone Home to gateway as producer

RI1 to fetch sensor Data

Form Reflexive Interest requesting associated
Data

RD1 return requested data

Optional D1 to complete Handshake

Store Result as gateway-named data, or
Unwrap globally named Data to put in Repo

Wake up to Phone home

Operational Considerations
• This is NOT backward-compatible

– Need an unbroken chain of forwarders that support reflexive forwarding or things don’t work
right

• Possible ways to overcome this
– Ignore the problem; let producers get a no route error if they try to send a reflexive interest.

This is ugly:
• how does producer figure out why no route
• How does he tell consumer that original exchange has failed for this reason – may need a new interest

return error
– Bump the CCNx/NDN protocol version on Interests carrying Reflexive Name Prefix TLVs

• key off this to send back an error from a back-version forwarder
• Pretty big hammer!

– Create a capabilities-exchange protocol so forwarders know capabilities of next hops
• Lots of work, but we probably need such a thing anyway!

Security Considerations
• This scheme is partly motivated by trying to

improve both Security and Privacy:
– Avoids payloads in Interests that then have to be

signed, with associated vulnerability to computational
attacks on producers
– Avoids routable names for consumers so they aren’t

exposed to various crafted and flooding attacks
– Avoids sending names crafted by consumers to

producers, which can open up reflection attacks

Some things on Security to Consider
• Collisions of Reflexive Name prefixes

– Avoid by using a crypto-quality PRNG
• Resource pressure on PIT

– Interests carrying Reflexive Name prefixes are more slightly
expensive in both compute and storage

• Privacy
– Same concerns about leaking information via names as all other

cases for CCNx or NDN
– Use cases may have message exchange and timing patterns that

allow easier linkability than independent exchanges

Outlook
• CCNx Key Exchange
• RESTful communication
• Information-Centric Web

• Multi-protocol cookie concept
• Many protocols utilize “cookie” concept: key exchange,

web etc.
• Idea: minimize number of RTTs (think QUIC 0-RTT)
• Provide way to integrate a “cookie map” in I1 Interest

That’s about it.
Questions & Comments?

Please review and comment on the
draft!!!

Forwarder Operation (1)
1. Upon receiving an Interest containing a RNP TLV:

– MUST record RNP as element of PIT entry for that
Interest

2. When forwarding an Interest with RNP TLV:
– MAY generate FPT and append it to the forwarded

Interest to be processed by the next hop
3. If an Interest contains an RPT:

– MAY use value to access corresponding PIT entry
– or do a direct lookup based on the Reflexive Interest

Name Prefix

Forwarder Operation (2)
1. MUST check that the high-order Name component of

Interest is of type RNP
– IF NOT, simply process the Interest as a normal non-reflexive

Interest
– ELSE treat as Reflexive Interest

• Create a new PIT entry for the Reflexive Interest
• Record the FPT (if any, as for other Interests)
• Look up ingress face from originating Interest's PIT entry and

forward the Reflexive Interest on this single face
– Append RPT from the ingress face information of original Interest's PIT

entry, if any
– Append FPT TLV to Interest if forwarder requires downstream forwarder to

supply an RPT in any returning Data packet for this Reflexive interest

TODO: Implementation: Forwarders
• Interest Input – sharded PITs can be tricky

– Avoid cross-chard updates whebn handling reflexive interests, or
– Force reflexive interests into same shard as original interest

• Interest Lifetime – extended by possibly multiple RTTs
– Could be hard for consumer to guess a good value

• Likely result is consumers grossly overestimating with bad effects when Interests can
experience undetected loss

– May need to have forwarder account for this by adjusting interest lifetime of
original interest when reflexive interests arrive

• Interest Aggregation – actually this all works out without any changes
– Like other Interest fields, MUST create separate PIT entry if Interests carry

different reflexive name prefix values.

Implementation: Consumers
• Decide how to name data returned for an arriving reflexive Interest

– Use a plain Data message if lifetime is just the enclosing enchange
– Encapsulate a whole Data message with its own fullname if global

visibility/lifetime is desired
• Set other fields appropriately for data useful within the enclosing

exchange
– Recommended cache time zero or small
– Data expiry no longer than Interest lifetime of original interest

• Terminate unwanted reflexive Interest arrivals
– Send a Prohibited Interest Return error
– Forwarders with then wipe out the corresponding RFIB entry

