
“EDHOC is designedimplemented 
for highly constrained settings”

F. Molina, T. Claeys, E. Baccelli, M. Vučinić

IETF-113, LAKE
21 March 2022, 1330 UTC

1



Outline

1. Context & Use Case
2. Dependencies

a. Available libraries
b. Missing blocks

3. EDHOC-C: Some Benchmarks
4. Lessons Learned

2



Motivation

RIOT-fp: cybersecurity research project by Inria

● Developing high-speed, high-security, low-memory IoT crypto primitives
● Secure IoT software updates and supply-chain, over low-power networks
● Providing guarantees for software execution on low-end IoT

● More info on the RIOT-fp project website 
https://future-proof-iot.github.io/RIOT-fp/about 

1. Context & Use Case

3

https://future-proof-iot.github.io/RIOT-fp/about


EDHOC
Key Exchange

Contact 
Tracing Server

Use Case

IPV6 Over BLE             
(Untrusted)

1. Context & Use Case

4



Goals

● Generic C implementation of EDHOC for microcontrollers
○ Support all authentication methods
○ Support cipher-suites 1-4 (both ECDSA and Ed25519 signatures)
○ Do not rely on hardware acceleration
○ Optimized for embedded: no heap -> no malloc

● Reuse existing libraries (e.g., for crypto backend)
○ Reuse libraries that are likely to be used by our applications

● Demonstrate integration in a constrained embedded software platform 
○ Running code on a large variety of microcontrollers!

1. Context & Use Case

5



Building blocks for the implementation

Spec base: draft-ietf-lake-edhoc-05

What do we need?

1. CBOR
a. encoding / decoding

2. CRYPTO
a. Key derivation
b. Encryption/Decryption
c. Signing/Verifying

3. Interoperability testing infrastructure
a. Test vectors
b. Communication infra + interop peer
c. Interoperability “peer”

4. Embedded software platform/ecosystem (to integrate into)

2. Dependencies

6



Generic CBOR Library
2. Dependencies - Available

NanoCBOR

● ✅ Optimized for 32 bit and small footprint
● ✅ Decode -> check result
● ✅ No allocation
● ✅ Returns pointer to CBOR byte strings
● ❌ No functions for streaming CBOR
● ❌ Missing functions for easy map parsing

TinyCBOR

● ✅ Optimized for small footprint and fast 
execution

● ❌ Check type -> decode -> check result
● ✅ No allocation
● ❌ Copies content from CBOR byte 

strings

7

https://github.com/bergzand/nanocbor
https://github.com/intel/tinycbor


Cryptographic Backends (non-exhaustive)
2. Dependencies - Available

8
Available in PRs or forked versions



Cryptographic Backends (non-exhaustive)
2. Dependencies - Available

K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig and E. Baccelli, "Secure Firmware Updates for Constrained IoT Devices Using Open 
Standards: A Reality Check," in IEEE Access, vol. 7, pp. 71907-71920, 2019, doi: 10.1109/ACCESS.2019.2919760.

9



Embedded Software Platform/Ecosystem
2. Dependencies - Available

Various open source options: FreeRTOS, RIOT, mbedOS, Zephyr, myNewt, liteOS…

We chose RIOT as general-purpose platform, which bundles:

● Generic HW support (ARM, RISC-V, MSP430, AVR, etc.)
● Ecosystem of libs, including

○ Crypto:
■ ✅ TinyCrypt
■ ✅ WolfSSL
■ ✅ AEAD & Hashes
■ ❌ MbedTLS (added since then)
■ ❌ HaCL (only old version supported)

○ CBOR libraries:
■ ✅ NanoCBOR
■ ✅ TinyCBOR

○ Network stacks:
■ ✅ CoAP/UDP/6LoWPAN (and 6TiSCH OpenWSN)
■ ✅ BLE, 802.15.4

10

https://github.com/RIOT-OS/RIOT


COSE, Test Vectors & Interop
2. Dependencies - Missing

LibCoSE

A COSE abstraction of crypto libraries

● Backends
○ ✅ MbedTLS
○ ✅ HaCL
○ ❌ TinyCrypt (added since then)
○ ❌ WolfSSL
○ ✅ Monocypher

● ✅ Signatures
● ❌ Encrypt (no AES-CCM at the time, added since then)
● ✅ Stream based API
● ✅ No Malloc

❌ No Fully Supported Cipher Suite

❌ Direct Access to crypto still needed

Test Vectors

- ❌ ✅ Limited
- No CBOR certificates
- Not all methods
- No real certificates

Interop

- ❌ Nothing at the time

11



EDHOC-C
3. EDHOC-C: Some Benchmarks

Spec base: draft-ietf-lake-edhoc-05

What we used

1. CBOR
a. NanoCBOR

2. CRYPTO
a. Tincrypt: AEAD & HASH
b. C25519 (D.Beer): SIGN/VERIF & ECDH

3. Interoperability testing infrastructure
a. py-edhoc
b. CoAP

4. Embedded software platform/ecosystem (to 
integrate into)

a. RIOT

Package: https://github.com/openwsn-berkeley/EDHOC-C 
RIOT Integration: https://doc.riot-os.org/group__pkg__edhoc__c.html

12

https://github.com/openwsn-berkeley/EDHOC-C
https://doc.riot-os.org/group__pkg__edhoc__c.html


EDHOC-C Footprint RAM/ROM

Cipher-suite-0, cortex-m4:

➔ ROM: ~9kB

➔ RAM: highly dependent on:
◆ Method
◆ Additional Data Size
◆ Credentials Size
◆ Credentials ID Size

3. EDHOC-C: Some Benchmarks

13



EDHOC-C Handshake (cipher-suite-0)
3. EDHOC-C: Some Benchmarks (No HW Acceleration)

COAP(IPV6(ieee802.15.4)) 
(over BLE: similar results)

14



EDHOC-C Handshake (cipher-suite-0)
3. EDHOC-C: Some Benchmarks (No HW Acceleration)

K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig and E. Baccelli, "Secure Firmware Updates for Constrained IoT Devices Using Open 
Standards: A Reality Check," in IEEE Access, vol. 7, pp. 71907-71920, 2019, doi: 10.1109/ACCESS.2019.2919760.

* 32 bytes message

* DISCLAIMER: coarse measurements.

15



1. Application uses LibCOSE
a. conflicts and redundant with EDHOC-C own COSE

2. Re-entrant API’s for crypto operations

LibCose

EDHOC-C on RIOT: test in the field
4. Lessons Learned

Contact tracing 
application

NanoCBOR

OS Kernel

Network 
Stack

Crypto

 TinyCryptC25519

EDHOC

16



EDHOC-C (draft-05 implementation)

1. Who and how to parse credentials?
2. bstr_identifier savings (1 byte) not worth the extra code complexity
3. Optimizing Ram

a. cose-key structures allocating space for the x,y,d,sym
b. Limit credentials ID support (no full credential)
c. Statically allocated work buffers: msg_struct, cose_keys, key_streams, etc.. 

i. tricky to know when to assume everything is allocated on the stack or not
4. Used cipher-suite-0 (only one available), SHOULD use cipher-suite-2/3

a. Re-use BLE crypto requirements
b. No sha512 required

5. MIGHT use cipher-suite-5 for code size (if no AES-CCM already)
a. AES-CCM no implementation with incremental API
b. ChaCha20-Poly1305 code size smaller than AES-CCM (in RIOT)
c. No sha512 required

4. Lessons Learned

17


