
Formal analysis of LAKE-EDHOC

Charlie Jacomme, Elise Klein, Steve Kremer, Mäıwenn Racouchot

March 21th, 2022

1

Protocol model

Formal verification

The SAPIC+ platform

Protocol description in applied-pi calculus, a high level programming language with

abstracted network inputs and outputs. Export to different tools that automatically

prove the security or find attacks:

• ProVerif: allows fast proofs

• Tamarin: more precise proofs

(tools used in multiple protocol analysis, like TLS 1.3, 5G-AKA, or EMV)

2

Primitive & Properties modeling

Modeling of primitives

Computations abstracted by their underlying properties.

E.g., a symmetric encryption is two abstract functions enc(), dec(), such that:

∀ m, sk . dec(enc(m, sk), sk) = m

↪→ This can lead to modelings that abstract too many possible behaviours.

Properties modeling

We use a first-order temporal logic to specify security properties.

∀ pkI pkR k]t1]t2. AcceptR(pkI , pkR, k)@t1 & Honest(pkI)@t2

⇒ ∃]t3. t3 < t1 & AcceptI (pkI , pkR, k)@t3

3

Advanced primitive models

Weak Diffie-Hellman model

• There exists an identity element e such that: ex = e.

• There exists a low-order point h, such that hx = hy and (h × g x)z = g xz .

Weak signatures model

• Malleability. (ES256)

• Dishonest key where verification always succeed. (edDSA)

Weak hash model

• Length-extensions: h(x |y) = h(h(x)|y) (SHA-1, SHA-256)

• Chosen prefix collisions: given p1, p2, the attacker may compute c1, c2 such that

h(p1|c1) = h(p2|c2). (MD5, SHA-1, SHA-256?)

4

The protocol model

LAKE-EDHOC

• The 4 methods executable in parallel;

• includes a Trust-On-First-Use paradigm;

• model all possible compromissions;

• alternate model with the KEM based variant.

Limitations

• No fine grained modeling of the cipher suite negotiation;

• no modeling of the key update mechanism;

• no modeling of the fourth message.

5

Automated analysis

Summary of results from automated analysis

Property Threat model

Basic Weak Sig Weak DH
Ephemeral +

Session leaks

Weak

Hashes + DH
KEM

Confidentiality 3 3 3 3 7 3

Agent Auth. 3 3 3 7 3 3

Transcript Auth. 3 ∼ 3 3 7 3

Algo Auth. 3 3 3 3 7 3

Session key uniqueness 3 3 7 3 7 7

Non-repudiation soundness 3 3 ∼ 3 ∼ 3

Inj. non-repudiation 3 ∼ ∼ 3 ∼ ∼

3 : property satisfied

7 : violation of property

∼ : unclear security

Weak Sig : weak signatures (malleable, yes keys)

Weak DH : small sub-groups

Weah Hash : Length extensions, chosen-prefix collisions

Table 1: Summary of results

6

High-level feedback

Security proofs

In most (strong) threat models, the protocol provides all expected security properties.

Suggestions for improvements

Simple changes and clarifications, identified through the automated analysis:

1. avoid potential misuse of the existing design;

2. strengthen the TEE implementation;

3. improve the future resilience of the protocol.

↪→ We will soon send out mails on the mailing list with concrete proposals for each of

those points.

7

Potential misuse

First potential misuse

Improving the guarantees on session key

The session key PRK4x3m offers weaker properties than the exported keys:

• A dishonest responder may completely control the final value of PRK4x3m (no

contributiveness), either through the identity DH element, or a KEM misuse.

• The session key is not linked to the execution, and does not authenticate TH4.

A concrete example

Authentication of TH4 is broken when:

• a different key exporter that does not include TH4 inside the key is used;

• AES CCM is used, making CYPHERTEXT 4 malleable and thus giving a different

value for TH4 on both sides, despite an explicit key confirmation.

8

First potential misuse

Improving the guarantees on session key

The session key PRK4x3m offers weaker properties than the exported keys:

• A dishonest responder may completely control the final value of PRK4x3m (no

contributiveness), either through the identity DH element, or a KEM misuse.

• The session key is not linked to the execution, and does not authenticate TH4.

A concrete example

Authentication of TH4 is broken when:

• a different key exporter that does not include TH4 inside the key is used;

• AES CCM is used, making CYPHERTEXT 4 malleable and thus giving a different

value for TH4 on both sides, despite an explicit key confirmation.

8

Improve security over the session key

Suggestion 1 - Additional “Master Secret” derivation

Instead of defining key material as the pair (PRK 4x3m, TH 4), introduce a final key

derivation which will be the key material and final session key:

PRK out := KDF(PRK 4x3m, TH 4).

Benefits

• An agent always inserts some of its own randomness inside PRK out through

TH 4: ensures contributiveness and avoids key control.

• Explicit key confirmation over PRK out does now authenticate TH 4, reducing

potential weak key exports.

9

Second potential misuse

Resending messages

“An EDHOC implementation MAY keep the protocol state to be able to recreate the

previously sent EDHOC message and resend it” [page 73]

AEAD IV and key reuse

Recomputing message 3, when the signature is randomized, lead to reusing the same

IV and key for distinct messages, which is outside of the recommended use for

AEADs.

Suggestion 2 - forbid message recomputation

Forbid this behavior, and only allow to store the explicit value of the last message

sent.

10

Strengthening the TEE

implementation

Agent Authentication

Threat model

Authentication operations inside a TEE, but device otherwise compromised.

• leak the initiator ephemeral key at the beginning, and the session key at the end;

• but no access to authentication keys.

An impersonation attack

In Method 1 where I authenticates with static share

1. Att initiates a session with R, impersonating I , and receives g r ;

2. Att initates a session with I , with its own long term key, and forwards g r ;

3. Thanks to leaks, Att can complete session with I , and learn the session key;

4. the session key is the MAC key, and can be used to complete the session with R.

11

Issue and proposed fix

Main concern

• In method 1,2,3, the session key is actually the MAC key, and is sufficient for

impersonation.

• It is not enough for all authentication operations to be safe to ensure

authentication, and storing G I inside a TEE does not increase the security level.

Suggestion 3 - stronger dependence of MAC 2 with G IY

Make methods 1,2,3 provide the same level of guarantees as method 0 by ensuring

that e.g. G IY is required to compute the MAC, and not just the session key:
MAC 2 :=

EDHOC-KDF(PRK 3e2m, TH 2, “MAC 2”, <ID CRED R, CRED R, ?G IY, ?EAD 2>, length)

12

Future proofing the protocol

Transcript collisions

Threat model

• The attacker can compute chosen prefix collisions.

Given p1, p2, it can compute c1, c2 such that h(p1|c1) = h(p2|c2)

• Agents accept as DH share the identity element (or low-order points).

The identity element e is such that ex = e.

Consequences

Breaks secrecy, and may allow for downgrade attacks.

Trans_E := method | suitesI | G_X | C_I | EAD_1 | G_Y | C_R

Trans_I := zero | "suitesI" | g^x | "C_I" | "EAD_1" | e | c2 | g^y | C_R

Trans_R := zero | "suitesI" | e | "C_I" | c1 | g^y | "C_R"

13

Mitigations

Suggestion 4

While we don’t know if chosen prefix collisions will ever be possible for SHA-256, we

can already mitigate the consequences:

• checking for low-order group elements improves the guarantees;

• adding length restrictions over EADs and C I, C R;

• ensuring that the message processing fails in case of a typing error, and e.g. reject

suites = [2* int / btstr] / int

14

Conclusion

Long-term plans

• Improve and deepen the analysis (key update, fourth message, . . .);

• keep the models up to date with the drafts and up to the final RFC;

• maybe look at a computational proof of security in Squirrel (a proof assistant).

Questions?

15

	Protocol model
	Automated analysis
	Potential misuse
	Strengthening the TEE implementation
	Future proofing the protocol

