QSC Key Identification and Serialization

draft-uni-qsckeys

Mike Osborne IETF 113, Viena March 21, 2022

What's the deal with PQC ?

- NIST PQC submissions have single serialized structure for keys
 - Resulting from the NIST evaluation API not design
 - Sounds nice in theory no parsing of key formats
- Implicit Key structure depends on :
 - Algorithm strength (Parameter sets 1,2,3,4,5)
 - Algorithm version where algorithm evolves (Round 2/ Round 3/ Final ,..)
 - HW alternatives (SHA2 vs SHAKE) (AES-256)
- The result:
 - Many possible algorithm variants for a single scheme (E.g. Dilithium)
 - An explosion in variants for hybrid schemes
 - Interop testing problems when scheme evolve

What's the deal with PQC ?

- Nice in theory to tie an algorithm identifier to an implicit key format
 - Removes parsing vulnerabilities
- In practice :
 - Algorithms already being deployed
 - We see that keys for many legacy systems simply DO NOT FIT
 - Getting keys safely to algorithm engines not addressed by algorithm designers
 - Algorithm performance tests conveniently ignore key provisioning times
- Most schemes detail key compression alternatives
 - E.g. Seeds that can be expanded
 - These compression alternatives are required
 - Lets not repeat mistakes made in the past

What are our goals?

- Goal: Make sure that PQC algorithms can be used by the largest number of applications quickly and safely
 - Learning from past mistakes with ECC in reducing multiple standards
 - Allowing as much interoperability and experience building in parallel to NISTs final standard
- Approach
 - To ensure correct communication key formats are serialized.
 - To recognize the need for key compression and deal with it early in a safe way
 - To identify the best identification algorithm/key identification approach
 - Higher level (than crypto API) considerations:
 - How to store / load the key from key formats (ordering)
 - Optional choices (for performance / size considerations)

Solution direction

- An RFC specifying key formats will help
 - Help manage algorithm versions and compatibility in key formats
 - Help interoperability of both testing and integration
 - Help make choices in future standards clear
 - Help prevent delays in integration and adoption
- Draft RFC "PQC Key Identification and Serialization" is shared with the cryptographic community
- Has received feedback from most scheme authors
- Has already demonstrated mistakes and lack of clarity in some scheme specifications

Next Steps

- Debate parsing complexity tradeoff for structure definitions
- Align with NIST on algorithm OIDs
- Align with ETSI / OASIS SAM / PKCS11 / KMIP TC / ...
- Resolve issues around hybrid modes (IP, key serialization)
- Encouraged format for migration
- Adjust Algorithm scope
 - + Alternate Round 4 candidates
 - Round 3 loosers

Resources

Work Item Repository (Issues, PRs, Details): https://github.com/Quantum-Safe-Collaboration/qsc-key-rfc

Datatracker: https://datatracker.ietf.org/doc/html/draft-uni-qsckeys-00.html

NIST PQC: https://csrc.nist.gov/projects/post-quantum-cryptography

Relevant KEM Schemes:

https://pq-crystals.org/kyber/ https://ntru.org/ https://www.esat.kuleuven.be/cosic/ pqcrypto/saber/ https://classic.mceliece.org/ Relevant Signature Schemes: https://pq-crystals.org/dilithium/ https://falcon-sign.info/ https://www.pgcrainbow.org/