

Performance of QUIC Implementations Over Geostationary Satellite Links using the QUIC Interop Runner

https://arxiv.org/abs/2202.08228

IETF113 maprg, Vienna

Sebastian Endres Jörg Deutschmann – joerg.deutschmann@fau.de Kai-Steffen Hielscher Reinhard German

Supported by:

Motivation

Performance Enhancing Proxies not applicable with QUIC

- Poor performance of QUIC over geostationary satellite links
 - draft-jones-tsvwg-transport-for-satellite, previous maprg meetings
 - Literature overview
 - So far: tests with specifically selected QUIC implementations

Motivation

QUIC Interop Runner https://interop.seemann.io

Motivation

- QUIC Interop Runner https://interop.seemann.io
 - Several interop tests
 - Performance tests
 - Bulk data transfer, symmetrical links, 10 Mbit/s, 30ms RTT, no packet loss
 - GOODPUT (good results for almost all implementations)
 - CROSSTRAFFIC with one competing TCP flow (results show significant unfairness)
- QUIC Interop Runner Satellite Edition https://interop.cs7.tf.fau.de
 - Added performance tests
 - Modified architecture includes real satellite links
 - Generation of time-offset graphs

	Name	RTT	Link Rate	PLR
		[ms]	[Mbit/s]	[%]
-	TERR.	30	20/2	0
	SAT	600	20/2	0
	SATLOSS	600	20/2	1
	ASTRA	≥600	20/2	≈0.1
_	EUTELSAT	≥600	50/5	≈ 0.1

Architecture and Setup (original QUIC Interop Runner)

- Docker containers on single host machine
- ns-3 link emulation
- Performance tests with emulated links
 - TERRESTRIAL
 - SAT
 - SATLOSS
- 10 iterations per QUIC client/server combination

Architecture and Setup (modified for real satellite links)

- Distributed setup
- Performance tests with real links
 - ASTRA
 - EUTELSAT
- Single vantage point
- 5 iterations per QUIC client/server combination

SAT (20/2 Mbit/s, 600ms RTT, no packet loss)

SATLOSS (20/2 Mbit/s, 600ms RTT, 1% packet loss)

ASTRA (real satellite link, 20/2 Mbit/s)

EUTELSAT (real satellite link, 50/5 Mbit/s)

Results Overview

$$Link \ Utilization = \frac{Goodput}{Link \ Data \ Rate}$$

Name	RTT Link Rate		PLR
	[ms]	[Mbit/s]	[%]
TERR.	30	20/2	0
SAT	600	20/2	0
SATLOSS	600	20/2	1
ASTRA	≥600	20/2	≈0.1
EUTELSAT	≥600	50/5	$\lessapprox 0.1$

Measure- ment	Mean	Max	Time- out <i>T</i>	Failed
	$[\mathrm{Mbit/s}]$	[Mbit/s]	[%]	[%]
TERR.	15.11	19.2	12	1
SAT	5.05	12.0	3	6
SATLOSS	3.06	11.5	13	17
ASTRA	4.91	13.5	23	15
EUTELSAT	6.98	17.5	20	11

Influence of CC Algorithm

Name	CCA	HyStart
aioquic	NewReno	×
chrome	BBRv2, CUBIC	✓
kwik	NewReno	×
lsquic	BBR, CUBIC	×
msquic	CUBIC	×
mvfst	BBR, CUBIC, NewReno,	✓
neqo	CUBIC, NewReno	×
nginx		×
ngtcp2	BBRv2, BBR, CUBIC, Reno	×
picoquic	BBR, CUBIC	✓
quant	NewReno	×
quic-go	CUBIC ?, Reno ?	×
quiche	CUBIC	✓
quicly	CUBIC, Reno, pico	×
xquic	BBR, CUBIC, Reno	×

Time-Offset Diagrams

kwik (server) - msquic (client) - SAT (no loss)

Isquic (server) - xquic (client) - SAT (no loss)

picoquic (server) – picoquic (client) – SATLOSS (1% loss)

msquic (server) - xquic (client) - SATLOSS (1% loss)

Summary

- Modified QUIC Interop Runner
 - Emulated satellite links and real satellite operators
 - Generation of time-offset diagrams
- QUIC + geostationary satellites: very poor performance in general
 - Worse with packet loss CUBIC and BBR better than (New)Reno
 - Performance depends on both client and server
 - Implementations probably not optimized for such link characteristics
 - Hard to debug each and every implementation / combination
- Next steps
 - More detailed analysis (e.g., influence of flow control)
 - Additional test scenarios and long term measurements
 - Discussion on EToSat mailing list