
Live Media Ingest Challenges

Ying Yin YouTube

Making the Internet work better

Live Media Broadcast Chain - Live Media Ingest

Live Media Ingest High Level Requirements

- Support high visual quality: 4K HDR
 - Broadcast level events: sports, gaming tournaments, concerts
- Codec Agility
 - HEVC, VP9, AV1
- Support low and ultra low latency (< 1 sec)
 - Sports, gaming with interaction via chats
- Ease of adoption among encoders
 - Software, hardware, mobile, browsers
- Large scale deployment
 - Load balancing, release update

Live Media Ingest Challenges

- RTMP
 - Doesn't have an official way to add new codecs, 4-bit enum for codecs
 - Latency: directly on top of TCP, has head-of-line blocking issue
- WebRTC
 - Adapts visual quality down quickly for conversational latency
- HLS/DASH
 - Higher latency as it is segment-based
- Low Latency HLS/DASH
 - More frequent playlist/manifest requests have overhead
 - Low adoption among encoders
- SRT
 - Has limitations for large scale deployment
- No perfect solution for ingesting high-end content at ultra low latency and at large scale.

Proposed MoQ Solutions

Focusing on Live Media Ingest specifically

- RUSH (<u>draft-kpugin-rush</u>)
- SRT over QUIC (draft-sharabayko-srt-over-quic)

Backup Slides

Most commonly used for media ingest to live streaming platforms.

Visual Quality

+ Can maintain good visual quality at high bitrate.

Codec Agility

- Doesn't have an official way to add new codecs.
- 4-bit enum for codecs

Latency

- + Frame-based, can support ultra-low and low latency live streams.
- TCP based which has the head-of-line blocking issue and can't easily use newer congestion control algorithms.

Adoption

- + Widest adoption among software and hardware encoders.
- Not supported by browsers.

Large scale deployment

+ TCP based, no issues

Designed for video conferencing which has much stricter latency requirements in order to maintain conversational interactivity.

Visual Quality

- Sacrifices too much quality for latency, not suitable for premium content.

Codec Agility

+ Can support new codecs such as HEVC, VP9.

Latency

+ UDP-based, can support ultra-low and low latency live streams.

Adoption

- + Supported by browsers
- No adoption by hardware encoders
- No much adoption by software encoders

Large scale deployment

 UDP based, load balancing is not a given for most off-the-shelf load balancers. HTTP based protocols which are originally designed for distribution.

Visual Quality

+ Can maintain good visual quality at high bitrate.

Codec Agility

+ Can support new codecs such as HEVC, VP9.

Latency

- Segment-based, additional latency which is at least the duration of the segment.

Adoption

- Mostly supported by high-end hardware encoders.

Large scale deployment

- TCP based, no issues

Uses partial media segments to lower the latency.

Visual Quality

+ Can maintain good visual quality at high bitrate.

Codec Agility

+ Can support new codecs such as HEVC, VP9.

Latency

- + Lower latency than HLS/DASH
- More frequent playlist requests add more overhead

Adoption

- Even less adoption than HLS/DASH for ingest

Large scale deployment

- TCP based, no issues

