Live Media Ingest Challenges

Ying Yin
YouTube
Live Media Ingest High Level Requirements

- Support high visual quality: 4K HDR
 - Broadcast level events: sports, gaming tournaments, concerts

- Codec Agility
 - HEVC, VP9, AV1

- Support low and ultra low latency (< 1 sec)
 - Sports, gaming with interaction via chats

- Ease of adoption among encoders
 - Software, hardware, mobile, browsers

- Large scale deployment
 - Load balancing, release update
Live Media Ingest Challenges

- **RTMP**
 - Doesn’t have an official way to add new codecs, 4-bit enum for codecs
 - Latency: directly on top of TCP, has head-of-line blocking issue

- **WebRTC**
 - Adapts visual quality down quickly for conversational latency

- **HLS/DASH**
 - Higher latency as it is segment-based

- **Low Latency HLS/DASH**
 - More frequent playlist/manifest requests have overhead
 - Low adoption among encoders

- **SRT**
 - Has limitations for large scale deployment

- No perfect solution for ingesting high-end content at ultra low latency and at large scale.
Proposed MoQ Solutions

Focusing on Live Media Ingest specifically

- RUSH (draft-kpuqin-rush)
- SRT over QUIC (draft-sharabayko-srt-over-quic)
Questions?
Backup Slides
Most commonly used for media ingest to live streaming platforms.

Visual Quality
- Can maintain good visual quality at high bitrate.

Codec Agility
- Doesn’t have an official way to add new codecs.
- 4-bit enum for codecs

Latency
- Frame-based, can support ultra-low and low latency live streams.
- TCP based which has the head-of-line blocking issue and can’t easily use newer congestion control algorithms.

Adoption
- Widest adoption among software and hardware encoders.
- Not supported by browsers.

Large scale deployment
- TCP based, no issues
Designed for video conferencing which has much stricter latency requirements in order to maintain conversational interactivity.

Visual Quality
- Sacrifices too much quality for latency, not suitable for premium content.

Codec Agility
+ Can support new codecs such as HEVC, VP9.

Latency
+ UDP-based, can support ultra-low and low latency live streams.

Adoption
+ Supported by browsers
- No adoption by hardware encoders
- No much adoption by software encoders

Large scale deployment
- UDP based, load balancing is not a given for most off-the-shelf load balancers.
HTTP based protocols which are originally designed for distribution.

Visual Quality
+ Can maintain good visual quality at high bitrate.

Codec Agility
+ Can support new codecs such as HEVC, VP9.

Latency
- Segment-based, additional latency which is at least the duration of the segment.

Adoption
- Mostly supported by high-end hardware encoders.

Large scale deployment
- TCP based, no issues
Current Protocols - Low Latency HLS/DASH

Uses partial media segments to lower the latency.

Visual Quality
+ Can maintain good visual quality at high bitrate.

Codec Agility
+ Can support new codecs such as HEVC, VP9.

Latency
+ Lower latency than HLS/DASH
- More frequent playlist requests add more overhead

Adoption
- Even less adoption than HLS/DASH for ingest

Large scale deployment
- TCP based, no issues