Adaptive Subscription to YANG Notification

draft-wang-netconf-adaptive-subscription-09
Qin Wu (Huawei)
Wei Song (Huawei)
Peng Liu (CMCC)
Qiufang Ma (Huawei) Presenter
Wei Wang (China Telecom)
Recap

• Motivation and Goal
 • A high frequency data collection leads to more resource consumption while low frequency data collection is insufficient for fault localization.
 • To address challenge in massive data collection and processing and look for balance between expensive data management cost and data fidelity for troubleshooting.

• Main idea
 • To install subscription policy built on top of YANG-PUSH mechanism and allow servers switch to different update intervals based on network condition changes.

• Document status
 • first proposed in March 2020 and presented several times in NETCONF session and received a lot of comments
 • Thanks Andy Bierman, Kent Watsen, Rob Wilton, Thomas Graf, Michael Richardson, Alex Clemm, Mahesh, etc
 • The WG adoption call was initiated in 10 January 2022 and we got a lot of supports
 • Thanks Peng Liu, Wei Wang, Zheng Qiang Li, Chongfeng Xie, Hongwei Li, Yongbo Liu, Aijun Wang, Zhixiong Niu, Kun Xie, Ren Gang, Chunshan Xiong
 • However we also received concerns from Andy Bierman and Per Andersson
 • Use of watermark, evaluation of xpath-external-eval, stateless xpath, xpath instance information, conflicts in multiple adaptive-period entries
Since IETF112

• Document Changes since -07
 • Define three **new RPC errors** to report when adaptive subscription unsupported, an Xpath syntax defined in “xpath-external-eval” unsupported, and **multiple XPath criteria conflict**, respectively.
 • **Remove the "watermark"** parameter.
 • Add **clarification about how to evaluate the XPath expression** defined in "xpath-external-eval".
 • Add **clarification about how to compare** a targeted data object in a **specific list entry**.
 • Add **clarification about how often** does the server check if the period should change.
 • Add a new example showing how the RPC error being returned by a publisher.
 • The usage examples fixed in the Appendix.
 • Grammatical errors correction(missing articles, plurality mismatches, etc).

• An IETF113 Hackathon project is proposed to provide implementation results on performance evaluation.
 • Monitor KPI changes at different frequency of data collection (high frequency, low frequency, adaptive frequency)
 • Evaluate the performance of adaptive subscription (e.g., telemetry data volume)
Hackathon—Test Environment setup

- gRPC-based telemetry to collect data from Access Points in our campus:
 - The following data collection methods are evaluated:
 - A high-frequency periodic telemetry
 - A low-frequency periodic telemetry
 - An adaptive-frequency telemetry
 - For each data collection method, two cases are evaluated:
 - One is to report the rssi values so as to detect real-time WiFi roaming across different APs (Access Points).
 - The other is to stream the bytes sent from the AP uplink so as to detect the possible uplink congestion

- ELK is used to collect, analyze, filter and visualize data.
 - The acronym for three open source tools: Elasticsearch, Logstash, and Kibana
 - The Huawei plugin for ELK to collect and process information from Huawei devices has been developed and open sourced
 Code: https://github.com/HuaweiDatacomm/elk-huawei-plugin

Network Scenario

Kibana for visualization

Elastic for indexing

Logstash for collecting
Hackathon—RSSI signals data streaming

Continuous high-frequency data collection at 2-second interval

Continuous degeneration

WiFi roaming happens

Period set to be every 2 seconds if the rssi value < -65dB;
If the rssi value >= -65dB, switch to 30 seconds period value.

Adaptive-frequency; condition evaluated by the subscriber

Continuous low-frequency data collection at 30-second interval

Streaming data at a fixed period.
Hackathon—upbytes statistics streaming

If the upbytes < 60000 bytes, stream data at 10-min interval; if the upbytes >= 60000 bytes, stream data at 1-min interval

High-frequency periodic subscription at 1-min interval within about 5 days

Low-frequency periodic subscription at 10-min interval

Received number of notifications for different collection methods
Issues clarification

• YANG-PUSH supports adaptive subscription already
 • It’s true that the subscriber can monitor the targeted data object change and modify the period for an existing subscription, but
 • More communication/computation/storage resource are consumed
 • From telemetry data collection
 • To modification operations sending
 • Sending modification request to switch from low frequency to high frequency streaming will experience service discontinuity
 • slow to response event and some data are lost since it can only polls at that low frequency.
 • It is late to instruct the device to report the telemetry data since insufficient data for troubleshooting has already occurred.
 • When tens of thousands of network devices need to be managed, frequent modifications are prone to errors.

• How often does the server check if the period should change?
 • The targeted object can be evaluated in the returned node set at the end of each high-frequency streaming update period.
 • To reduce the frequency of evaluation, the server can choose to check targeted object change at every multiple (e.g., 2 or 3) update periods.
Issues clarification (cont.)

• XPath instance information
 • Q: “How to select no more than one entry if there are list instances to handle?”
 • Xpath can be used to identify a particular instance, e.g., to represent a comparison for a leaf in a list entry:
 `/if:interfaces/if:interface[if:name="eth0”]/if:in-errors>1000`

• XPath is not stateful, the problem statement seems to be limited to absolute values of specific leaf or leaf-list. Usually at least a rate (e.g., two values retrieved at a known time interval) is needed.
 • XPath 1.0 supports + operator to perform addition, - operator to perform subtraction, div operator to perform division, etc.
 • a rate (e.g., two values retrieved at a known time interval) can be represented using XPath with various numeric operators such as
 • In this case, two data objects are required for XPath evaluation
 `/bookstore/book[title="learning XML”]/price div 100`
 • In this case, one data object is sufficient for XPath evaluation
 • The current draft focuses on smart filter case, e.g., monitored data object exceeds a specific threshold
 • In this case, a single data object is sufficient
 • Another design consideration, is to define a data node which has already performed numeric operation or hide mathematic operation, e.g., a data node with average value as output
Comments, Questions, Concerns?