Reflections on CLAS evolution

draft-contreras-nmrg-clas-evolution

L.M. Contreras (Telefonica)

ACK: slides prepared based on -00 version of the draft together with the comments received by Med, Carlos and Diego

IETF#113, Viena (Austria), March 2022
Background

• Cooperating Layered Architecture for Software-Defined Networking (CLAS) was a work adopted inn SDNRG which was moved into ISE after RG closure
• It was finally released as RFC 8597
• It proposes a layered control architecture where control functions associated with transport are differentiated from those related to services in such a way that they can be provided and maintained independently and can follow their own evolution path.
Overview

• Functional Strata
 – **Service stratum**: functions related to the provision of services (including capabilities exposed to external applications)
 – **Transport stratum**: functions related to the transfer of data between communication end-points

• Plane separation
 – **Control plane**: control of resources in each strata
 – **Management plane**: management of resources and control plane in each strata
 – **Resource plane**: resources required for a given service (can be or not the termination points of a transport function)

• Despite differentiation, tight cooperation is needed for an efficient service provision
Motivation for CLAS evolution

• Networks are evolving towards a tighter integration of interconnected compute environments
 • Interworking of virtualized and physical service functions

• Moreover, network operations are complementing the capabilities of automation and programmability with the introduction of Artificial Intelligence (AI) and Machine Learning (ML) techniques
 • Base for closed loop automation

• Focus on management and control, not in aspects such as service placement
Evolved Architecture

Service Stratum
- Resource Plane
- Control Plane
- Management Plane

Connectivity Stratum
- Resource Plane
- Control Plane
- Management Plane

Compute Stratum
- Resource Plane
- Control Plane
- Management Plane

Learning Plane
Augmentation of CLAS with Compute and Data Awareness

• Compute Stratum
 • Consideration of distributed computing capabilities attached to different points in the network, intended for hosting a variety of services and applications usually in a virtualized manner
 • e.g., availability of computing capabilities could be based on [I-D.contreras-alto-service-edge]
 • Contains the control, management and resource planes related to the computing part

• Learning Plane
 • Collection, processing and sharing of relevant data from each of the strata.
 • Introduction of Artificial Intelligence (AI) and Machine Learning (ML) techniques in order to improve operations by means of closed loop automation
 • e.g., learning plane could be based on [I-D.pedro-nmrg-ai-framework], being e.g. fed by [I-D.ietf-opsawg-service-assurance-yang]
Potential research directions

- Work on aspects such as:
 - Communication means/interfaces between strata (and planes)
 - Deployment scenarios (including legacy ones)
 - Potential use cases
 - Link with on-going activities in NMRG (IBN, AI, etc)
- Explore novel architectural approaches: e.g., bus architecture for interaction of planes in a single stratum
- Inter-domain APIs between different/same strata
 - e.g., further developing and updating ideas as described in draft-bernardos-nmrg-multidomain-01
- Explore intent-based APIs/approaches for learning plane
- Data models (and even ontologies) for the exchange and aggregation of information, knowledge and actions among the different planes and strata
Next steps

- Set the scope of the draft aligned with the scope of NMRG

- Collect feedback / interest from the RG on any of the aspects commented
 - Initial feedback expressed on mailing list by Med, Carlos and Diego
 - Yet pending to address the comments received in a new version of the draft
 - Feedback also received from Pedro and Qin off-line

- Prepare a new (more detailed version) for IETF 114