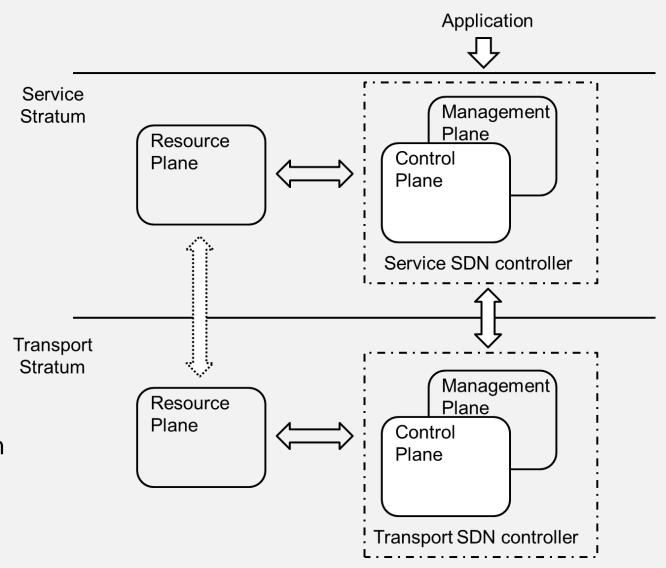


Reflections on CLAS evolution

draft-contreras-nmrg-clas-evolution

L.M. Contreras (Telefonica)

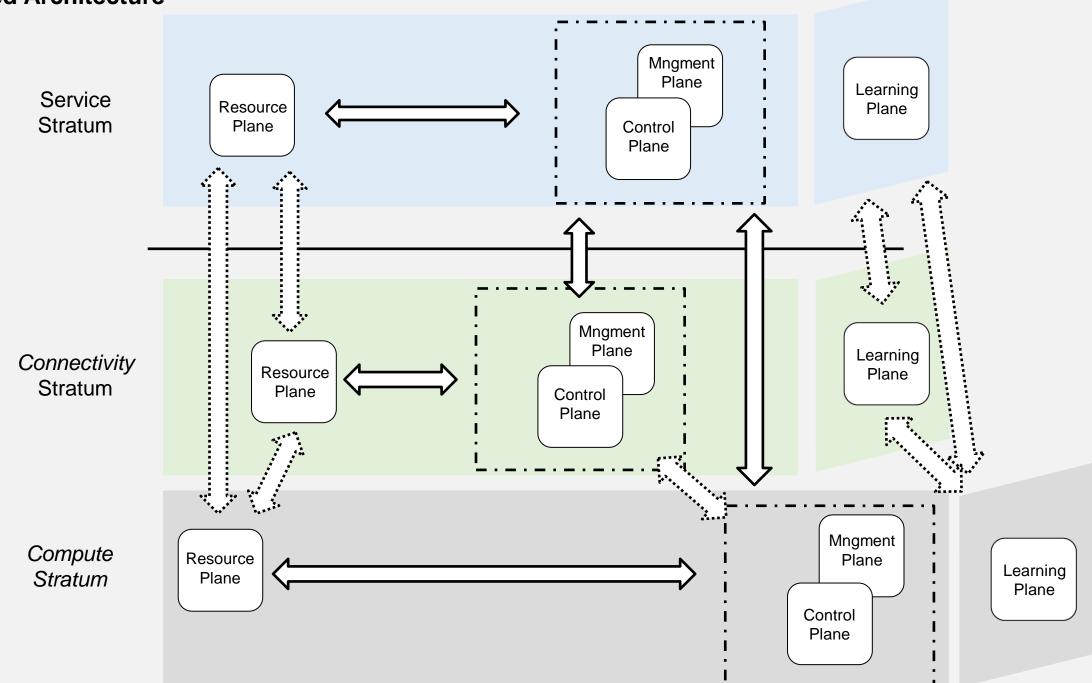
ACK: slides prepared based on -00 version of the draft together with the comments received by Med, Carlos and Diego


IETF#113, Viena (Austria), March 2022

Background

- Cooperating Layered Architecture for Software-Defined Networking (CLAS) was a work adopted inn SDNRG which was moved into ISE after RG closure
- It was finally released as RFC 8597
- It proposes a layered control architecture where control functions associated with transport are differentiated from those related to services in such a way that they can be provided and maintained independently and can follow their own evolution path.

Overview


- Functional Strata
 - <u>Service stratum</u>: functions related to the provision of services (including capabilities exposed to external applications)
 - <u>Transport stratum</u>: functions related to the transfer of data between communication end-points
- Plane separation
 - <u>Control plane</u>: control of resources in each strata
 - <u>Management plane</u>: management of resources and control plane in each strata
 - <u>Resource plane</u>: resources required for a given service (can be or not the termination points of a transport function)
- Despite differentiation, tight cooperation is needed for an efficient service provision

Motivation for CLAS evolution

- Networks are evolving towards a tighter integration of interconnected compute environments
 - Interworking of virtualized and physical service functions
- Moreover, network operations are complementing the capabilities of automation and programmability with the introduction of Artificial Intelligence (AI) and Machine Learning (ML) techniques
 - Base for closed loop automation
- Focus on management and control, not in aspects such as service placement

Evolved Architecture

Augmentation of CLAS with Compute and Data Awareness

- Compute Stratum
 - Consideration of distributed computing capabilities attached to different points in the network, intended for hosting a variety of services and applications usually in a virtualized manner
 - e.g., availability of computing capabilities could be based on [I-D.contreras-altoservice-edge]
 - Contains the control, management and resource planes related to the computing part
- Learning Plane
 - Collection, processing and sharing of relevant data from each of the strata.
 - Introduction of Artificial Intelligence (AI) and Machine Learning (ML) techniques in order to improve operations by means of closed loop automation
 - e.g., learning plane could be based on [I-D.pedro-nmrg-ai-framework], being e.g. fed by [I-D.ietf-opsawg-service-assurance-yang]

Potential research directions

- Work on aspects such as:
 - Communication means/interfaces between strata (and planes)
 - Deployment scenarios (including legacy ones)
 - Potential use cases
 - Link with on-going activities in NMRG (IBN, AI, etc)
- Explore novel architectural approaches: e.g., bus architecture for interaction of planes in a single stratum
- Inter-domain APIs between different/same strata
 - e.g., further developing and updating ideas as described in draft-bernardosnmrg-multidomain-01
- Explore intent-based APIs/approaches for learning plane
- Data models (and even ontologies) for the exchange and aggregation of information, knowledge and actions among the different planes and strata

Next steps

- Set the scope of the draft aligned with the scope of NMRG
- Collect feedback / interest from the RG on any of the aspects commented
 - Initial feedback expressed on mailing list by Med, Carlos and Diego
 - Yet pending to address the comments received in a new version of the draft
 - Feedback also received from Pedro and Qin off-line
- Prepare a new (more detailed version) for IETF 114