Digital Twin Network: Concepts and Reference Architecture

draft-irtf-nmrg-network-digital-twin-arch-00

Cheng Zhou (<u>zhouchengyjy@chinamobile.com</u>, **Presenter**) Hongwei Yang(<u>yanghongwei@chinamobile.com</u>) Xiaodong Duan (<u>duanxiaodong@chinamobile.com</u>) Diego Lopez (<u>diego.r.lopez@telefonica.com</u>) Antonio Pastor (<u>antonio.pastorperales@telefonica.com</u>) Qin Wu (<u>bill.wu@huawei.com</u>) Mohamed Boucadair (<u>mohamed.boucadair@orange.com</u>) Christian Jacquenet (<u>christian.jacquenet@orange.com</u>)

Scope & Objectives

• Scope

- Present an overview of the concepts of Digital Twin Network
- Provide the basic definitions and sketch a reference architecture
- Identify use cases and discuss the benefits and key challenges of the technology

• Objectives

- Promote the widely adopted digital twin concept to networking field
- Establish a reference architecture to rationalize Digital Twin Network effort
- Identify future technical research directions on enabling technologies

Changes Log

06

Dec 2021

0cr 2021

07

Mar 2022

00

Versions 00

draft-zhou-nmrg-digitaltwin-network-concepts 00 draft-irtf-nmrg-network-digital-twin-arch

- RG Adoption:
 - Dec 10, 2021: Call for adoption was issued

hul 2020

- Mar 8, 2022: the draft was adopted by the RG
- draft-irtf-nmrg-network-digital-twin-arch-00 uploaded to IRTF

eb 2021

01 02

0202-104

• Addressed comments from NMRG reviewers

- 50+ comments received since the RG adoption call on draft -06
- Many thanks to the NMRG participants: Daniel King, Quifang Ma, Laurent Ciavaglia, Jerome Francois, Jordi Paillisse, Luis Miguel Contreras Murillo, Alexander Clemm, Qiao Xiang, Ramin Sadre, Pedro Martinez-Julia, Wei Wang, Zongpeng Du, and Peng Liu.

hul 2021

Addressed most comments in the submitted -00 version (03/2022)

A summary of Comments

No.	Reviewer	Amount	Major comments	Actions Taken	
1	Daniel King	19	 To make core requirements and research challenge; To cite more other researches; To go deeper in one or two use case; To desribe more on 'digital twin' and other terms of 'model' and 'shadow'; to add new section of 'enabling technologies' 	Explained in mail list and revised for most comments. Remaining open issues: 1) To go deeper in one or two use case; 2) to add new section of 'enabling technologies'	
2	Alexander Clemm	4	1) to add the origin of the twin;Explained in mail list and revised for m2) to expand research challenges;comments. Remaining open issues: To3) to refer to previous work related to digital twin networkstudy the mentioned earlier technique related to digital twin network		
3	LUIS MIGUEL CONTRERAS MURILLO	6	1) quesion on DT control; 2) physical network should focus on IETF related networks; 3) to refer to IETF model technologies; 4) whether physical network layer contains controller;	Explained in mail list and revised for most comments.	
4	Jordi Paillissé	4	1) recommended a modeling soluiont 'MimicNet' for reference; 2) what are the output of the 'digital twin'? 3) to add more references.	Explained in mail list and revised for most comments.	
5	Jérôme François	16	1) to emphasize the benefits of the digital twin, comparision with other simulation platform; 2) to refine the challenges and describe more on 'enabling technologies'; 3) why distinguish data and model; 4) Is 'real time interactoin mapping' always bidirectional and mandatory?	Explained in mail list and revised for most comments. Remaining open issues: to add new section of 'enabling technologies'	
6	Qiufang Ma	2	 do we allow the application layer to interact with physical network directly? should physical network only be controlled by digital twin network? 	Explained in mail list	
7	Qiao Xiang	1	Expreesed strong support, especially on the "3-layer architecture"	N/A	
8	Wei Wang	0	Support with no quesitons	N/A	
9	Zongpeng Du	0	Support with no quesitons	N/A	
10	Peng Liu	u 0 Support with no quesitons N/A			

Major Changes

- Better structure the content
 - Adding more subsections on concepts of digital twin network, removing the 'Requirements' Language' section, and moving ahead the 'Challenges' section
- Strengthen research background
 - Cited more papers or industrial information on digital twin concepts and digital twin for networks.
- More focus on Challenges
 - Added more information to describe the challenges and key characteristics of digital twin network
- Close OLD Issues
 - Mainly those related to investigating related digital twin network efforts and identify the differences/commonalities
- Focus on Future Research Directions
 - Added several new open issues for future studies

Remaining Open Issues

No.	Issue Description	Action plan
1	Should a new section of 'enabling technologies' be added?	The draft focuses on concept and architecture of digital twin network, not including enabling technologies. Actually, each 'enabling technology' is worth of a separate draft to study in details in future. A decision is needed that whether to add a section to describe the enabling technologies in brief.
2	It is recommended to describe recent IRTF/IETF technologies in the draft.	Related to above issue, if section of enabling technologies is added, recent technologies (e.g. Network connectivity, Real-time data communication, Collaboration management, conflict detection and resolution, etc.) recently discussed in the IRTF/IETF should be described.
3	It is recommended to go deeper in one or two use case.	Once the reference architecture is stable, will consider adding a case study section to go deeper in one specific case, following the architecture.
4	To study the mentioned earlier techniques related to digital twin network.	The idea behind digital twin networks is reminiscent of earlier work from the 1990s that should be referenced/acknowledged. Examples include the Shadow MIB concept, Inductive Modeling Technique, etc.
5	Which level of details should the document to include without losing its purpose, especially for 'challenges', and 'enabling technologies'?	Opened in mailing list for comments.

Open Discussion Items

- Motivation & requirements
- Challenges & problems
- Reference architecture
- Enabling technologies, and case studies
- Future research directions (*not limited to this draft*)

Motivations and Requirements

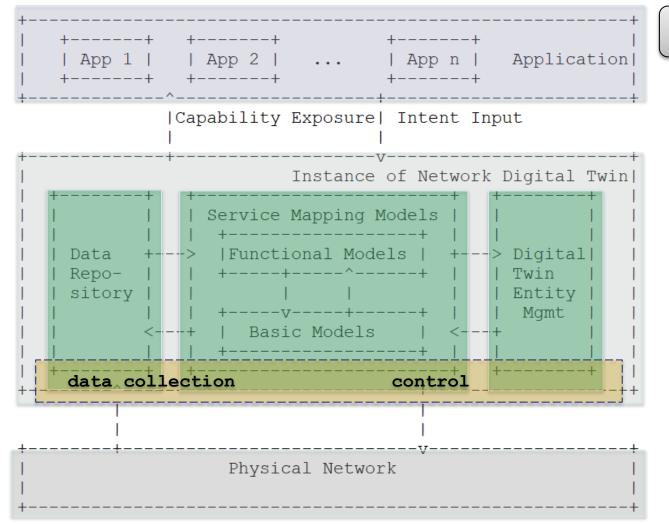
• Challenges in network operation and maintenance

- New network services emerge endlessly, and the network scale continues to expand
- The complexity of network O&M is becoming higher
- Innovative technologies need longer time to deploy with no high-fidelity testbed
- Network optimization has high cost and high risk due to vulnerable production environment

• Network automation and autonomous operation are becoming a new vision

- Intent-based Networking (IBN), Auto-driving Network (ADN), Zero touch network are studied
- AI/ML technologies are widely used in network filed to help achieve the vision
- Digital twin brings a new chance to meet the challenges
 - Virtual-real mapping and interaction brings a solution beyond physical network
 - The network digital twin can help the physical network realize low-cost trial, intelligent decisionmaking, efficient innovation and predictive maintenance.

Challenges to Build Digital Twin Network


- Challenges to build digital twins in industrial fields
 - Data acquisition and processing
 - High-fidelity modeling

- Hu, W., Zhang, T., et al., **Digital twin: a state-of-the-art review of its enabling technologies, applications and challenges**. Journal of Intelligent Manufacturing and Special Equipment, Vol. 2 No. 1, pp. 1-34", 2021.
- Real-time, two-way connection between the virtual and the real twins
- Unified development platform and tools
- Environmental coupling technologies

• Challenges to build DT for network

- Large scale challenge: complex giant system brings trouble to all SW designs
- Interoperability: multiple vendors
- Data modeling difficulties: tradeoff between cost, efficiency and complexity
- Real-time requirements: the faster, the better? Tradeoff between latency and accuracy
- Security risks: Severe impact in face of attacks or info leakage.
- Any others?

Reference Architecture

Three-layer DTN reference architecture

- The Lowest Layer: Physical Network
- **Top Layer:** Network Application
- The Intermediate Layer: Network Digital Twin
 - Core layer of DTN system
 - 3 key subsystems: Data repository, Service mapping models, and Digital Twin entity mgmt

• Optional sub-layer:

- 'Data collection' and 'change control' are regarded as southbound interfaces between virtual and physical networks.
- They can optionally form a sub-layer or subsystem to provide common functionalities

Enabling Technologies for Building DTNs

• Data Collection

- Diverse existing tools (e.g., SNMP, NETCONF, Telemetry, INT, etc.) can be used to collect different type of network data
- Innovative new tools (e.g., sketch-based measurement) can be explored
- Semantic aggregation mechanisms for data integration and action translation

• Data storage and services

- Unified data repository to effectively store large-scale and heterogeneous network data
- To provide data services including fast search, batch-data handling, conflict avoidance, data access interfaces, etc.

• Network Modeling

- For small scale network, network simulating tools (e.g., NS-2, GNS3), or virtualization tools (VNF/VM) can be an option
- For large scale network, low-cost solution (normally based on formal methods) is required to create network element and topology models.
- AI/ML can be used to build complex functional models in twin entity.

• Visualization

- Display the network topology, operational status in multiple dimensions and fine granularity
- The interactive visualizing the execution of models to help users better understand, deduce and explore the network Interfaces and protocols
- Interfaces
 - **Twin interfaces** between the physical network and its twin entity: existing interfaces (SNMP, NETCONF, etc.) or new interfaces
 - **Application-facing interfaces** between the network digital twin and applications, e.g., Intent, "what-if" planning app, ...
 - Internal interfaces within network digital twin: Interfaces of high-speed, high-efficiency, high-concurrency, etc.

Data Collection – a case study

An Efficient Data collection method for Digital Twin Network, NMRG draft 2021

- Current collection methods collect raw and full data from Physical Network, and have the problems:
 - Time-cost
 - Insufficient storage resources
 - Low computational efficiency
 - Waste of bandwidth resources caused by data transmission.
- This draft proposes an efficient and lightweight data collection, aggregation and correlation method.
 - Twin Network sends instructions to Physical Network to collect data on demand
 - Physical Network completes instructions such as knowledge representation
 - Telemetry Streaming Element (TSE) of Physical Network completes data aggregation and correlation.
 - Finally TSE sends the represented data to the Twin Network.


https://datatracker.ietf.org/doc/draft-zhu-nmrg-digitaltwin-data-collection

++
Digital Twin Network
++ ++
Instruction Data
management storage
center center
++- + +++
· · · · · · · · · · · · · · · · · · ·
Real-time interaction and mapping
Physical Network
++ ++
DSC DSC TSE
+-++ +++ ++-+
+

Network modeling – a case study

A knowledge graph-based construction method for Digital Twin Network, 2021 IEEE DTPI.

- DTN system design referred the architecture in the draft.
- Basic models are built via formal methods.
 - Network device models are built based on a 'six-turple' **ontology**.
 - Topology models are built using knowledge graph: A NRE algorithm composed of LSTM and CNN is proposed to mine the complex relationships between topologies or network elements.
- Functional models can be built using AI/ML algorithms.

Future Candidate Research Directions

- not limited to this draft

- Deeper researches on the 5 key enabling technologies
- More assessment to quantify the gain brought by DTN to Network management?
- AI/ML/RDL algorithms used for network modeling
- How can 'knowledge' be injected to network digital twin to help achieve vision of 'autonomous network' ?
- How can DTN integrate and evolve with legacy network management system?
- Define capability levels and the evaluation methods. For instance:
 - the resource requirements and effectiveness evaluation of a DTN system for a given business requirements on a specific physical network.
 - metrics and measurement to evaluate the accuracy/fidelity of a digital twin.

Next Steps

- Issue threads for each of the candidate research directions
- Record the outcome of these threads in the draft as appropriate
- We also welcome proposals to enhance the document
- Your comments are always welcome!