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1.- Introduction and Motivation  
 
Network operation, management and optimization are built based on network models. A network 
model is a digital representation of the physical and logical networking infrastructure that it is 
able to understand the complex relationship between the different network characteristics. This 
is also known as digital twin. As examples of digital twins: a twin can estimate what will be the per-link 
utilization for a particular input traffic in a data center, predict the QoE for a set of flows in an access 
network or estimate the resulting network state if a link fails in an ISP network. 
 
Typically, such network models operate in conjunction with management and/or optimization 
algorithms. In such scenarios the network administrator configures the network policy (goals) in the 
algorithms that uses the network model to obtain the configuration that meets the goals.  Then the 
optimization algorithm is tasked to explore the configuration that meets the goals of the network 
administrator. An example of this is Traffic Engineering, where the goal is finding a routing configuration 
that keeps the per-link utilization below the per-link capacity. Since the dimensionality of the 
configuration is typically very large, efficient optimization strategies reduce them by using expert 
knowledge. The networking community has developed over decades a large set of network models and 
optimization strategies [1]. 
 
One of the fundamental characteristics of network operation, management and optimization is that we 
can only operate what we can model. For example, in order to optimize the jitter of the packets 
traversing the network we need a model able to understand how jitter relates to other network 
characteristics. In the field of fixed networks many accurate network models have been developed in 
the past, particularly using Queuing Theory [2][3]. However, such models make some simplifications like 
assuming some non-realistic properties of real-world networks (e.g., generation of traffic with Poisson 
distribution, probabilistic routing)[4]. As a result, they are not accurate for large networks with realistic 
network configurations.  
 
Recent advances in Artificial Intelligence (AI) [5] have led to a new era 
of Machine Learning (ML) techniques such as Deep Learning [6]. This 
has attracted the interest of the networking community to try to take 
advantage of these novel techniques to develop a new breed of 
models, particularly focused on complex network scenarios and/or 
metrics [7]. 
 
In this context relevant research efforts are being devoted into this new 
field. Researchers are using neural networks to model computer 
networks [8], to then employ such models for network optimization 
[9][10], in some cases in combination with advanced strategies based 
on Deep Reinforcement Learning (DRL) [4][11][12]. 
 

“ML applied to Networking 
has not outperformed yet 

traditional mechanisms 
because state-of-the-art 

proposals use neural 
networks that cannot learn 

and model networks. 
Computer networks are 

fundamentally represented 
as graphs (topology, routing, 

etc.)” 
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“ML applied to Networking 
has not outperformed yet 

traditional mechanisms 
because state-of-the-art 

proposals use neural 
networks that cannot learn 

and model networks. 
Computer networks are 

fundamentally represented 
as graphs (topology, routing, 

etc.)” 
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How to build a 
Network Digital Twin?
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What are the inputs and outputs?

Network 
Digital 
Twin

?

? ?

Before discussing how to build the Digital Twin, 
we need to clearly define the inputs and outputs
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Performance Network Digital Twin

Performance
Network 

Digital Twin

Network
Configuration

Traffic Load

Network 
Performance

5



Performance Network Digital Twin

Real Network

Time

Q
ue

ue

Queue 
Utilization

Time

D
el

ay

Delay and
Jitter

Time

D
ro

ps

Losses

Time

U
til

iz
at

io
n

Link 
Utilization

- Topology and Link capacity
- Underlay Routing (OSPF, IS-IS, 
etc)
- Overlay Routing (e.g, SRv6)
- Queue Policy (scheduling, size)
- ECMP weights, LAG

- Application type (ToS, etc)
- Start time and duration
- Traffic Model (VoIP, Web, VoD, 
AR/VR, etc)

Apply configuration

6



Performance Network Digital Twin
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Use-cases in 
Network Management
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Use-cases of the Performance Network Digital Twin (II)

• What-if
• What will be the impact on the network load if we acquire Company X?
• What will be the impact on the users if the 5G Core fails and users are redirected to 

the backup 5G core?
• Optimization

• How can I support new user SLAs with the same resources?
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What we want to build?
A Performance Network 

Digital Twin
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Building a Network Digital Twin using: 
Simulation
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Building a Digital Twin with a Simulator
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built using a network simulator



Building a Digital Twin with a Simulator

• We have built a Digital Twin using the OMNET++ simulator
• This is a discrete-event simulator
• It simulates the propagation, transmission and forwarding of each

and every packet
• Other well-known discrete-event simulator are NS2/3, GN3, Cisco 

packet tracer
• Accuracy is very good
• Accuracy = Delay measured at the real network vs delay measured

at the simulator
• Accuracy is expressed as Error in %  
• What about the simulation time?

14



Building a Digital Twin with a Simulator

Simulation time (Y) vs. Number of packets (X)

Figure 1: Simulation time depending on the number of
routers in the network.

wireless networks, etc. Some simulators are widely used and main-
tained, such as OMNET++ [19] or ns3 [18].

However, their main limitation is the simulation time, especially
for networks with high-speed links (10 Gbps and above). Hence,
depending on the size of the network to simulate, it becomes im-
practical to simulate some networks [32] CITATION other papers
simulation ADD the sim time is unacceptable for a DT.

As an example, �g. 1 presents the simulation time depending on
the size of the simulated network. We simulated di�erent topologies
using the OMNET++ simulator in order to estimate the delay of a
set of source-destination �ows. In addition, (i) each node has one
FIFO queue on each output port, (ii) packets are generated with a
Poisson process, (iii) the packet size is modeled with a binomial
distribution, and (iv) the tra�c matrix is composed of random traf-
�c intensities capped at a maximum average tra�c intensity for
any source-destination pair. We arti�cially generated the topolo-
gies using the Power-Law Out-Degree Algorithm described in [20],
where the ranges of the U and V parameters of the algorithm have
been extrapolated from real topologies of the Internet Topology
Zoo repository [10]. Finally, we generated di�erent routing con�gu-
rations for each topology, as variations of the shortest path routing
scheme.

Maybe add computer specs (processor)
We can see that the simulation time increases linearly, and that

a network with 300 nodes can take up to 8h to simulate. Since some
networks have more than 300 nodes, simulating such network takes
too much time, and becomes infeasible for optimization scenarios
that have to test di�erent con�gurations to �nd the optimal. More-
over, the simulator was using only one FIFO queues, so if we wanted
to simulate more complex scheduling policies, like Wetighted Fair
Queing, it would take much more time.

In fact, the simulation time depends on the number of events
to process [23]. This limits the scalability of simulators even if the
topology does not change: increasing tra�c intensities will take
longer to simulate because more packets enter the network per unit
of time. Conversely, simulating the same tra�c intensity in larger

Figure 2: Simulation time depending on the number of pro-
cessed events.

topologies will also increase the simulation time. Fig 2 plots the
simulation time depending on the number of events. do we need
more details of the scenario? Again, we clearly observe a linear
relationship, and note that simulating 4 billion events takes more
than 11 hours.

4 billion events may appear a large �gure. However, consider a 1
Gbps link transmitting regular Ethernet frames, with the maximum
1518 bytes, this means that aprox. 82k packets cross the link per sec-
ond. Assuming a network with 50 links, and that the transmission
of a packet over a link equals to a single event a in the simulator,
such network translates 82k * 50 ⇡ 4 million events to simulate one
second of network activity. Hence, with a budget of 4 billion events,
it takes 11 hours to simulate just 16 minutes of network activity.

(which is often the case because is when parameters are more
di�cult to predict) the simulation time increases linearly, because
they have to process more packet per second in order to emulate
network congestion.

Hence, the key limitation of packet levels simulators is the sim-
ulation time. As we mentioned, we wish to quickly obtain the
performance metrics, in order to use them in optimization scenar-
ios. Note that, from now on, we consider as a baseline the results
obtained via simulation due to their high accuracy.

Mention that parallelization is an effective way to scale a sim-
ulator, but it can increase development complexity and hardware
cost maybe compare network speed vs. cpu speed and say that 20
years ago simulating networks was feasible in supercomputers in
real time, now not?. Compare PTS of previous papers?

3 QUEUING THEORY
As opposed to simulation, Queuing Theory (QT [4]) can o�er ac-
curate performance estimates with little delay. QT is arguably the
most popular modeling technique, where networks are represented
as interconnected queues that are evaluated analytically. This rep-
resents a well-established framework that can model complex and
large networks. It has been successfully applied to a variety of

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

• Simulation time scales linearly
with the number of packets
(discrete-events)

• 1 billion packets takes 11h
(Xeon E, 64GB RAM) of CPU 
time

• Roughly equivalent to 1min of 
a single 10Gbps link

It is impractical to build a Network Digital Twin using a Discrete-Event Simulator
because of its high computational cost
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Building a Network Digital Twin using: 
Emulation
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Building a Network Digital Twin using Emulation
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Building a Network Digital Twin using Emulation

• Poor accuracy of network emulation
• Because emulation does not use specific hardware built for networking
• If your network infrastructure is already fully virtualized, then emulating it

requires as many resources as running the real one
• Otherwise peformance will be lower

• Emulation has many relevant use-cases
• Training
• Debugging (why my SYN packets are being dropped)
• Testing new features (what happens if I actívate this feature?)

Lochin, Emmanuel, Tanguy Perennou, and Laurent Dairaine. "When should I use network emulation?." annals of telecommunications-
annales des télécommunications 67, no. 5 (2012): 247-255. 18

It is impractical to build a Network Digital Twin using emulation
because of it offers poor accuracy



Building a Network Digital Twin using: 
Queuing Theory
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Building a Network Digital Twin using Queuing Theory

• Queing Theory represents our best available analytical tool for
computer networks modelling.

• It models the network as a series of queues serviced by routers

Sundarapandian, V. (2009). "7. Queueing Theory". Probability, Statistics and Queueing Theory. PHI Learning. ISBN 978-8120338449.

Leonard Kleinrock 
pioneered the

application of QT to 
packet-switched network 

in the 70s.

20
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Building a Network Digital Twin using Queuing Theory
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Performance Network Digital Twin

Ferriol-Galmés, M., Rusek, K., Suárez-Varela, J., Xiao, S., Cheng, X., Barlet-Ros, P., & Cabellos-Aparicio, A. (2022). RouteNet-Erlang: A Graph Neural 
Network for Network Performance Evaluation. In Proc. Of IEEE INFOCOM 2022  https://arxiv.org/abs/2202.13956 21

Network Digital Twin is
built using a equations



Building a Network Digital Twin using Queuing Theory

• The QT Digital Twin is fast (milliseconds)
• QT Digital Twin scales linearly with the

number of queues.
• It can support real-world networks

• The main limitation with QT is that it has 
poor accuracy under realistic traffic
models
• This is a well-known limitation
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Figure 3: Delay prediction of a queing theorymodel for di�er-
ent types of tra�c, compared with results from the simulator
in sec. ??.

scenarios ranging from �ow table size estimation [26] to cloud
computing [28].

Nevertheless, the key limitation of QT are the strong assumptions
on the packet arrival process, which typically do not hold in real
networks CITE ERR? [31]. Internet tra�c has been extensively
analyzed in the past two decades [1, 8, 9, 11, 21], and despite the
community has not agreed on a universal model, there is consensus
that in general aggregated tra�c shows strong autocorrelation and
a heavy-tail [22].

As an example, �gures 3a 3b shows the error when calculating
the network delay using the QT model described in appendix ??
for di�erent tra�c models. The error is computed with respect to
the results of the simulator from sec. ??. We can see that the QT
model performs quite well for Poisson and Constant bitrate tra�c,
while for the rest of the tra�c models (On-O�, autocorrelated expo-
nentials and modulated exponentials) the Mean Absolute Relative
Error (MARE) is more than 20%.

@Miquel scenario: type of network, tra�c matrix, topology...?
M++: Queda una mica extrany que ataquem a QT i no usem els
mateixos samples que a RNN i MLP. Hauriem de predir els mateixos
samples? (Els resultats seran similars, a QT li és igual)

Since QT struggles to adapt to all the possible tra�c models, we
conclude that it has limited applicability to a DT despite its speed.
@Albert: too strong assumption, and they’ll say: a model for each
traf�c model

4 MACHINE LEARNING
TODO: needs a section explainin why generalization and scalability
are important, say "generalization" and say it’s two parts (i) under-
stand different topologies, and (ii) understand larger topologies, say
it’s a challenge we haven’t faced in previous systems because they
naturally have these properties

Next, we investigate classical Machine Learning (ML) tools that
can be used to build a Digital Twin. Machine Learning has been
applied in a wide variety of domains, including networking. For
example, it is widely used in tra�c classi�cation [17] and resource
allocation [27]. In this section, we build a DT with two widely used
ML models: a Multi Layer Perceptron (MLP CITE), and a Recurrent
Neural Network (RNN CITE).

Machine Learning models are especially interesting in our sce-
nario because they o�er the best of simulation and queuing theory:
they can be trained to understand virtually any network feature
that we can represent with a dataset, and their speed is in the same
order of magnitude than analytical QT models. Regarding the for-
mer, there are some caveats with respect to training that we discuss
in sec. ??.

4.1 Multi Layer Perceptron
4.1.1 Design. M++: Several works have proposed MLP [14, 24,

29] as a viable way to build a Digital Twin for computer networks.
Inspired by the aforementioned works we build a MLP that will be
responsible of predicting themean-delay for each source destination
pair. For this, we explore several Hyperparameters that have been
tunned:

• Number of hidden units: Same as the number of inputs
(� ). In this particular case, � = (<0G#4CF>A:(8I4 � 1) ⇤
<0G#4CF>A:(8I4) ⇤ =D<�40CDA4B), since the biggest net-
work is GEANT(24 nodes)<0G#4CF>A:(8I4 = 24, the max-
imum number of links and paths is 575 adn the number of
features (link capacity, packets, bandwidth, tra�c models...)
which makes a total input size of 575 ⇤ 15 = 8625D=8CB .

• Number of layers: One input layer., two hidden layers with
ReLU activation and one output layer with Linear Activation.

• Optimizer: Adam
• Loss function: Mean Absolute Percentage Error (MAPE).

@Miquel 1 paragraph explaining how it’s build usually
@Miquel 1 paragraph howwemodel a network with MLP. Detail

that we want to make it understand di�erent tra�c models, since
it’s one of the limiation of QT.

4.1.2 Evaluation. @Miquel details training and testing (which
dataset, trainig parame, hyperparameter, etc , which dataset do we
use? Same as sim section? Dataset Tra�c Model is FIFO Dataset
routing: Poisson + FIFO

We focused the evaluation of the MLP in its ability to adapt to
di�erent tra�c models and changes in routing con�gurations. First,
table 2 presents the error when predicting the network delay with
respect to our simulator, and for di�erent tra�c models. We can
see that the MLP o�ers an accuracy similar to our QT model: the
error is around 10% for Poisson tra�c, but increases signi�cantly
for the rest of tra�c models, between 23% and 84%. @Miquel: why

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

Error (lower is better) when predicting the
performance of flows with different traffic
models. 

Modulated is roughly equivalent to TCP traffic

It is impractical to build a Network Digital 
Twin using QT because it is not accurate
with realistic traffic
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Building a Network Digital Twin using: 
(Graph) Neural Networks
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Building a Network Digital Twin using Neural Nets
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Building a Network Digital Twin using Neural Nets
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Building a Network Digital Twin using GNNs
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- Topology and Link capacity
- Underlay Routing (OSPF, IS-IS, 
etc)
- Overlay Routing (e.g, SRv6)
- Queue Policy (scheduling, size)
- ECMP weights, LAG

- Application type (ToS, etc)
- Start time and duration
- Traffic Model (VoIP, Web, VoD, 
AR/VR, etc)Network Digital Twin is built using a GNN

ErlangNet: A custom built Graph Neural Network 
architecture tailored for computer networks

Ferriol-Galmés, M., Rusek, K., Suárez-Varela, J., Xiao, S., Cheng, X., Barlet-Ros, P., & Cabellos-Aparicio, A. (2022). RouteNet-Erlang: A Graph Neural 
Network for Network Performance Evaluation. In Proc. Of IEEE INFOCOM 2022  https://arxiv.org/abs/2202.13956

Performance Network Digital Twin
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Building a Network Digital Twin using GNNs

27

• GNNs provide good accuracy in 
unseen scenarios
• Trained in 20-30 nodes networks

• GNNs speed: milliseconds



Building a Network Digital Twin using GNNs

28

• GNNs provide remarkable accuracy under arbitrary traffic models 

• Error when estimating the delay is <10%

The main limitation of neural nets is that they
need a dataset, this is costly and complex



Conclusions
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Conclusions: Building a Performance Network Digital Twin
Technology Accuracy Speed Why?

Emulation Poor Slow
Emulation is useful to check for configuration errors or
test the interaction between different protocols. It is not
accurate in performance estimation.

Simulation Good Slow
Simulation time scales with the amount of packets, 1min 
of a 10Gbps link takes 11h to simulate. It is too slow for
performance estimation.

Analytical Models
(Queuing Theory) Poor Fast Fast and accurate, but does not work well under

realistic traffic models (e.g., TCP)
Neural Nets (MLP and 

Recurrent NN, see Backup
slides)

Poor Fast
Fast and accurate, but it does not work in scenarios not
seen in training (e.g, Link failure)

Graph Neural Networks Good Fast
GNNs are tailored to learn network-structured data. 
They offer oustanding accuracy in scenarios not seen in 
training.

30



Backup Slides
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Building a Network Digital Twin using: 
Neural Networks (MLP and RNN)
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Building a Network Digital Twin using Neural Nets

Traffic Load
Traffic Matrix
Start/End Flow
Flow Model (VoIP, VoD, 
Web, etc)
- Inter-arrival time
- Size distribution

Topology, Link Capacity
Routing
- Overlay: SRv6, MPLS…
- Underlay: OSPF, BGP…
Scheduling Policy (arbitrary)
- Queue Length
- Policy
- Hierarchy of policies
ECMP, LAG, etc

Configuration

Time
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Queue 
Utilization

Time

D
el
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Delay and
Jitter

Time

D
ro

ps

Losses

Time
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til
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n

Link 
Utilization

- Topology and Link capacity
- Underlay Routing (OSPF, IS-IS, 
etc)
- Overlay Routing (e.g, SRv6)
- Queue Policy (scheduling, size)
- ECMP weights, LAG

- Application type (ToS, etc)
- Start time and duration
- Traffic Model (VoIP, Web, VoD, 
AR/VR, etc)

Performance Network Digital Twin
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Network Digital Twin is
built using a neural network



Building a Network Digital Twin using Neural Nets

Accuracy Error (MAPE) when
estimating the delay. 

Percentage error of the real vs. 
predicted value

MLP (Fully-
connected)

Recurrent NN

Same routing as 
in training

12.3% 10.0%

Different routing
as in training

1150% 30.5%

Link Failure 125% 63.8%

• Both RNN and MLP are fast
(milliseconds)

• They scale –roughly- constantly
(O(1)) with all network
parameters

• They offer poor accuracy when
operating in configurations
(routing, link failures) not seen in 
training

It is impractical to build a Network Digital Twin 
using MLPs and RNNs because they do not
support different network topologies, routing or
link-failures
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Overview of the most common NN architectures

Type of NN Information 
Structure

Fully Connected 
NN (e.g., MLP)

Arbitrary

Convolutional NN Spatial

Recurrent NN Sequential

Graph NN Relational

35

Classification, 
Unsupervised 
Learning

Images and video

Text and voice

Graphs 
(molecules, maps, 
networks)



Overview of the most common NN architectures
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RNNs, MLPs and CNNs are unable to understand
information structured as a network



Use-Cases of Performance Network Digital Twin

• Network planning
• What is the optimal network equipment upgrade to support this new set of 

users?
• Troubleshooting
• Why VoD packet losses was high yesterday?

Time
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Queue 
Utilization

Time
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Delay and
Jitter

Time
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Losses
Time
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Link 
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Cu

Customer Network

Network 
Administrator

Traffic 
Telemetry

Management 
Platform

Network Planning and Upgrade, 
Troubleshooting, Performance 
Analysis, What-if Analysis, 
Optimization, Traffic Analysis.
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