The importance of non-textual code transmission in
RFC 8628

IETF 113, March 24 2022, Filip Skokan



Textual vs. non-textual

et e LT + e et t e T
I I I

| Using a browser on another device, visit: | | Scan this QR code tomm - +

| example.com/device | | on another device I[I_1.. . I21]

I I I [ e

| And enter the code: | VsS. | | . . e

| WDJB-MJHT [ [ e e o

| | | Confirmation code: [ I P

Fomm e - + |  WDJB-MJHT - +




3.3.1. Non-Textual Verification URI Optimization

When "verification uri_complete" is included in the authorization
response (Section 3.2), clients MAY present this URI in a non-textual
manner using any method that results in the browser being opened with
the URI, such as with QR (Quick Response) codes or NFC (Near Field
Communication), to save the user from typing the URI.

For usability reasons, it is RECOMMENDED for clients to still display
the textual verification URI ("verification uri") for users who are
not able to use such a shortcut. Clients MUST still display the
"user code", as the authorization server will require the user to
confirm it to disambiguate devices or as remote phishing mitigation
(see Section 5.4).

If the user starts the user interaction by navigating to
"verification uri complete", then the user interaction described in
Section 3.3 is still followed, with the optimization that the user
does not need to type in the "user code". The server SHOULD display
the "user code" to the user and ask them to verify that it matches
the "user code" being displayed on the device to confirm they are
authorizing the correct device. As before, in addition to taking
steps to confirm the identity of the device, the user should also be
afforded the choice to approve or deny the authorization request.



Description

—

end-user mistypes verification_uri (or enters it to a search engine) and either
a. lands on a phishing site directly
b. lands on a search engine result page full of landmines, ends up on a phishing site anyway

enters the user_code and is presented with a phone number to call, a scripted scenario
takes place

agent will first ask for an email address, with the end-user on the phone it is easy to drive
the end-user’s attention away from the fact they’re being guided to hand over a password
reset code to the agent (“magic” login link is another possibility)

agent is now authenticated, they can run the rest of their script (buy digital products with a
saved payment method, attempt to upsell fake services, etc)

at the end of it the agent enters the right code (asks for it over the phone) at the
verification_uri and the end-user is logged in on their consumption device,
completely unaware of that they’ve just been wronged and their account was
compromised



Key points

e End-user initiated the authorization flow, not the attacker

e End-user has a legitimate stake in completing the authorization flow

e Improving consent or confirmation screens on the “other” device does nothing
to prevent this type of attack

e End-user walks away satisfied and detection is delayed



What's next?

e Is this an end-user problem?

o Yup. There are warning posts along the way that the end-user ignored, but we could still do
better

e If we preferred non-textual code transmission in our interfaces, end-user
would not end up on a phishing site
e Implement password reset links, not password reset codes

Question: Other than QR code scanning (present in every default mobile phone
“camera” app since a few major mobile OS versions ago), what other convenient
and readily available non-textual code transmission method can we recommend?



