PKCE in the Security BCP

CSRF Protection

PKCE provides better CSRF protection than state and nonce:
e PKCE can be enforced by the AS

o the client can’t “forget” to check
o forces client to maintain a session

e With SHA256: CSRF protection even if authorization request leaks

Protection Layer for Authorization Codes

Misuse of authorization codes was a major driver for the security BCP.
(Log files, mobile devices, intermediaries, browser history, etc.)

For confidential clients:

Attackers need to use the code in a second flow to circumvent the client
authentication (“code injection”). PKCE and nonce (via ¢_hash) prevent this.

For public clients:

Attackers can directly call the token endpoint. Only PKCE prevents this.

Attacker Calls

ClentType Ro%Po"S° | ToronEndpont Auh Code lecton cSR”
yp Prevented by: y y
Confidential = code Client Authentication | PKCE PKCE or nonce
Confidential @ code+id token | Client Authentication PKCE or PKCE or nonce
nonce+c_hash
Public code PKCE PKCE PKCE or nonce
Public code+id_token | PKCE PKCE or PKCE or nonce

nonce+c_hash

Clients MUST prevent injection (replay) of authorization codes into
the authorization response by attackers.* Public clients MUST use
PKCE [REC7636] to this end. For confidential clients, the use of
PKCE [REC7636] is RECOMMENDED. With additional precautions,

described in Section 4.5.3.2, confidential clients MAY use the OpenID

Connect nonce parameter and the respective Claim in the ID Token
[OpenID] instead. In any case, the PKCE challenge or OpenID Connect
nonce MUST be transaction-specific and securely bound to the client
and the user agent in which the transaction was started.

Note: Although PKCE was designed as a mechanism to protect native
apps, this advice applies to all kinds of OAuth clients, including
web applications.

When using PKCE, clients SHOULD use PKCE code challenge methods that
do not expose the PKCE verifier in the authorization request.
Otherwise, attackers that can read the authorization request (cf.
Attacker A4 in Section 3) can break the security provided by PKCE.
Currently, S256 is the only such method.

Authorization servers MUST support PKCE [REC7636].

* better: “Clients MUST prevent misuse of
authorization codes and injection (replay)
of authorization codes into the
authorization response ...”

Compatible to Existing Implementations?
Adding a protection layer for authorization codes and robust CSRF protection is
not 100% compatible with OIDC Core:

e state is so far not required
e nonce is so far not required in response_type=code flows
e PKCE is so far not required for public clients

Same goes for other defenses, like precise redirect URI matching.

Further Thoughts...

e Security BCP makes AS-support for PKCE mandatory
e Enforcing PKCE on the AS is an easy way to prevent PKCE Downgrade
attacks

Summary of Discussion 2022-03-23 @ IETF113

e Currentrules are fine
o Obligations for clients to use PKCE, not for servers to enforce PKCE

e Spec needs more explanation

] ® Provide rationale for PKCE rules

#27 opened 14 hours ago by danielfett

(] (© Note that new requirements can break existing ecosystems

#26 opened 14 hours ago by danielfett

