
PKCE in the Security BCP



CSRF Protection

PKCE provides better CSRF protection than state and nonce:

● PKCE can be enforced by the AS
○ the client can’t “forget” to check
○ forces client to maintain a session

● With SHA256: CSRF protection even if authorization request leaks



Protection Layer for Authorization Codes

Misuse of authorization codes was a major driver for the security BCP.

(Log files, mobile devices, intermediaries, browser history, etc.)

For confidential clients: 

Attackers need to use the code in a second flow to circumvent the client 
authentication (“code injection”). PKCE and nonce (via c_hash) prevent this.

For public clients: 

Attackers can directly call the token endpoint. Only PKCE prevents this.



Client Type Response 
Type

Attacker Calls 
Token Endpoint
Prevented by:

Auth Code Injection
Prevented by:

CSRF
Prevented by:

Confidential code Client Authentication PKCE PKCE or nonce

Confidential code+id_token Client Authentication PKCE or 
nonce+c_hash PKCE or nonce

Public code PKCE PKCE PKCE or nonce

Public code+id_token PKCE PKCE or 
nonce+c_hash PKCE or nonce



* better: “Clients MUST prevent misuse of 
authorization codes and injection (replay) 
of authorization codes into the 
authorization response …”

*



Compatible to Existing Implementations?

Adding a protection layer for authorization codes and robust CSRF protection is 
not 100% compatible with OIDC Core:

● state is so far not required
● nonce is so far not required in response_type=code flows
● PKCE is so far not required for public clients

Same goes for other defenses, like precise redirect URI matching.



Further Thoughts…

● Security BCP makes AS-support for PKCE mandatory
● Enforcing PKCE on the AS is an easy way to prevent PKCE Downgrade 

attacks



Summary of Discussion 2022-03-23 @ IETF113

● Current rules are fine
○ Obligations for clients to use PKCE, not for servers to enforce PKCE

● Spec needs more explanation


