
(The sorry) 
State of the Clients

Daniel Fett, IETF 113



There is a lack of good, modern, and 
universal OAuth client libraries.



good, modern, universal

- follows latest security recommendations
- feels native in the language/framework
- maintained and documented

- security features (PKCE!)
- asymmetric client authentication (MTLS?)
- OAuth 2.1? FAPI?

- not tailored towards specific vendors/APIs
- not limited to certain use cases
- configurable for various feature sets

(ideally using server metadata)



Experience in Practice

There are some good libraries, but…



Experience in Practice

… most of the time: Custom implementations!

● Hard to point devs to good libraries
○ Lack of documentation/discoverability:

■ supported features set
■ client or server?
■ supported specifications
■ security recommendations followed or not?

○ Incomplete implementations (“it works for Sign-in with Google”)
○ Many unmaintained implementations

Lack of libraries → APIs need to provide request-level description of flow → “it’s 
just a few requests, I can implement that myself”



Experience in Practice

● OAuth Configuration Hell™ 
Authz Endpoint URL? Token Endpoint URL? Userinfo Endpoint? Supported 
grant types? Client authentication? Security Mechanisms? …

→ without Server Metadata: Tedious process, reduced value in using libraries



The Consequences



The Consequences

● Unnecessary fragmentation
● Slow adaption of new specs
● Developer frustration

○ “several hours of research before implementing an OAuth integration”



Exhibit A: Developer Experience



● Custom implementations are expensive
○ Some API providers maintain custom OAuth implementations in several languages
○ API providers need to explain OAuth and support developers
○ Trial and error for devs to figure out supported features of AS

E.g., twitter.com
expects a fully
custom implementation!

Time and Money



● Consumes time and money
○ Some API providers maintain custom OAuth implementations in several languages
○ API providers need to explain OAuth and support developers
○ Trial and error for devs to figure out supported features of AS

E.g., twitter.com
expects a fully
custom implementation!

Time and Money



Security

● Custom implementations are bad for security
○ Many opportunities for hidden security problems in custom implementations
○ New security recommendations are not likely to be implemented
○ Known anti-patterns are repeated
○ New security mechanisms are hard to implement

● [Li et al., 2014]
60 chinese clients, more than half vulnerable to 
CSRF

● [Yang et al., 2016]
Out of 405 clients, 55% do not handle state (CSRF 
protection) correctly

● [Shebab et al., 2015]
25% of OAuth clients in Alexa Top 10000 vulnerable 
to CSRF

● [Chen et al., 2014]
89 of 149 mobile clients vulnerable to one or more 
attacks

● [Wang et al., 2013]
Vulnerabilities in Facebook PHP SDK and other 
OAuth SDKs

● [Sun et al., 2012]
96 Clients, almost all vulnerable to one or more 
attacks



Let’s discuss solutions!



Proposal 1: Set a Goal

There should be defined levels of support for OAuth libraries.

● Based upon existing profiles and specs, like OAuth 2.1 or FAPI 2.0
● Or other profiles, like in OpenID Connect (+ some security requirements):

→ Provide library developers with a clear set of features to support in order to 
achieve interoperability.



Proposal 2: Make Metadata Mandatory

OAuth Server Metadata [RFC8414]

● enables libraries to automatically configure themselves, including
○ security mechanisms,
○ endpoints,
○ supported grant types,

● thereby drastically reducing development time and cost for clients, 
● increasing the value of using libraries, and
● increasing adoption of new security features.

It should be mandatory in OAuth 2.1 and should be expected in any new OAuth 
ecosystem.



Proposal 3: Conformance Tests

Based upon defined profiles, provide conformance tests.

Who could do that?

Who would finance that?



Other ideas?



The End.


