
Service Awareness rather than
Path Awareness

Michael Welzl (University of Oslo),
Keith Winstein (Stanford University)

1

PANRG, IETF 113
24. 3. 2022

Vienna, Austria

The problem

• Performance Enhancing Proxies (PEPs) sometimes let TCP work
better than QUIC, e.g. over satellites
– Has anyone tried QUIC over mmWave?
– Encrypting transport headers solves ossification, but at a cost

• PEPs are not strictly evil
– They try to be useful, and sometimes succeed
– Claim: ossification is at least partially due to transparent proxy design

(they must cheat, so they must make assumptions about header fields)

• MASQUE is not transparent. Add PEP functions there?
– Maybe? But this might cause ossification problems again...
– Perhaps depending on the PEP function

2

What we suggest

• Separation of concerns
– A separate “sidecar (SC)” protocol for non-critical PEP functions,

independent of main protocol
– Non-criticality ensured by letting main protocol choose services

over a local sidecar interface (on the same host!)

• Minimize changes to “main” protocol
– Sidecar ossification means: the PEP function does not improve

further (bad but harmless)

• PEP functions are use cases of the sidecar protocol

3

Sidecar functionality

• Data plane: directly affect main protocol
– Without parsing header: queue management, re-transmission, ..

• Control plane
– Local (on host) information exchange with main protocol

• SC ACKs between sidecar entities
– Hash over main protocol’s transport header
– SC ACKs are either separate or piggybacked (e.g., QUIC: UDP options)

• Next: two example use cases
– Written “QUIC”, but should work the same way for, e.g., TCP or SCTP

4

Example use case 1:
link-specific congestion control

QUIC

Server Client

QUIC

SC proxy

QUIC connection

• Adjacent to fluctuating-capacity link
– SC proxy’s congestion control should track available capacity better,

and needs data packets for when capacity becomes available

Link with
fluctuating
capacity

5

Example use case 1:
link-specific congestion control

QUIC

Server

SC

Client

QUIC

SC proxy

QUIC connection

• Adjacent to fluctuating-capacity link
– SC proxy’s congestion control should track available capacity better,

and needs data packets for when capacity becomes available

Service choice:
If you tell me to

increase my
cwnd, I will.

Link with
fluctuating
capacity

6

Example use case 1:
link-specific congestion control

QUIC

Server

SC

Client

QUIC

SC proxy

QUIC connection

• Adjacent to fluctuating-capacity link
– SC proxy’s congestion control should track available capacity better,

and needs data packets for when capacity becomes available

hash influence
rate

SCSC ACKs SCSC ACKs

Service choice:
If you tell me to

increase my
cwnd, I will.

SC notification:
An ACK has arrived,
increase your cwnd.

Link with
fluctuating
capacity

7

Example use case 1:
link-specific congestion control

QUIC

Server

SC

Client

QUIC

SC proxy

QUIC connection

• Adjacent to fluctuating-capacity link
– SC proxy’s congestion control should track available capacity better,

and needs data packets for when capacity becomes available

hash influence
rate

SCSC ACKs SCSC ACKs

Service choice:
If you tell me to

increase my
cwnd, I will.

SC notification:
An ACK has arrived,
increase your cwnd.

Link with
fluctuating
capacity

8

Minimal changes to QUIC: only server side
• Local interface communication
• If the service is chosen:

increase cwnd when SC tells us to

Example use case 2:
WiFi AP ACKs on behalf of host

QUIC

Server Client

QUIC

WiFi AP =
SC proxy

QUIC connection

• AP keeps track of transport packet – ACK mapping
• Creates a transport ACK to the server when LL ACK from client arrives

– Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted
Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

9

Example use case 2:
WiFi AP ACKs on behalf of host

QUIC

Server

SC

Client

QUIC

WiFi AP =
SC proxy

QUIC connection

• AP keeps track of transport packet – ACK mapping
• Creates a transport ACK to the server when LL ACK from client arrives

– Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Service choice: I will
treat SC ACKs like client
ACKs (but keep data in
the send buffer until
client cumulatively
ACKs, just in case).

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

10

Example use case 2:
WiFi AP ACKs on behalf of host

QUIC

Server

SC

Client

QUIC

WiFi AP =
SC proxy

QUIC connection

• AP keeps track of transport packet – ACK mapping
• Creates a transport ACK to the server when LL ACK from client arrives

– Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

hash

SCSC ACKs

Service choice: I will
treat SC ACKs like client
ACKs (but keep data in
the send buffer until
client cumulatively
ACKs, just in case).

SC notification:
An ACK has arrived.

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

11

Example use case 2:
WiFi AP ACKs on behalf of host

QUIC

Server

SC

Client

QUIC

WiFi AP =
SC proxy

QUIC connection

• AP keeps track of transport packet – ACK mapping
• Creates a transport ACK to the server when LL ACK from client arrives

– Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

hash

SCSC ACKs

Service choice: I will
treat SC ACKs like client
ACKs (but keep data in
the send buffer until
client cumulatively
ACKs, just in case).

SC notification:
An ACK has arrived.

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

12

Minimal changes to QUIC: server + client side
• Server: local interface communication
• If the service is chosen:

• Via QUIC, tell client to send fewer ACKs
• Accept ACKs from SC, but keep data in send buffer

Conclusion

• We believe this is a way forward to solve the e2e encryption /
ossification / PEP dilemma

• Research needed
– How to limit hashing / SC ACK overhead?
– The devil is in the details: what are viable use cases?

• E.g., link-specific congestion control use case: different from TCP connection
splitter, SC entities must find and trust each other
– SC proxy can just send SC ACKs back towards the sender; doesn’t need to trust anyone
– Sender-side SC entity needs to trust the SC proxy... but the SC proxy can’t easily guess hashes
– Path changes: if there’s a different SC proxy on the new path, it just begins to send SC ACKs
– ... but there needs to be a setup phase, or else we could get N SC proxies on a path, all ACKing J

– Can this really be done independent of the main protocol?

13

Thanks!

Questions?

14

