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The problem

Performance Enhancing Proxies (PEPs) sometimes let TCP work
better than QUIC, e.g. over satellites

— Has anyone tried QUIC over mmWave?

— Encrypting transport headers solves ossification, but at a cost

PEPs are not strictly evil
— They try to be useful, and sometimes succeed

— Claim: ossification is at least partially due to transparent proxy design
(they must cheat, so they must make assumptions about header fields)

MASQUE is not transparent. Add PEP functions there?
— Maybe? But this might cause ossification problems again...
— Perhaps depending on the PEP function



What we suggest

» Separation of concerns

— A separate “sidecar (SC)” protocol for non-critical PEP functions,
independent of main protocol

— Non-criticality ensured by letting main protocol choose services
over a local sidecar interface (on the same host!)

* Minimize changes to “main” protocol

— Sidecar ossification means: the PEP function does not improve
further (bad but harmless)

* PEP functions are use cases of the sidecar protocol




Sidecar functionality

Data plane: directly affect main protocol

— Without parsing header: queue management, re-transmission, ..

Control plane

— Local (on host) information exchange with main protocol

SC ACKs between sidecar entities

— Hash over main protocol’s transport header
— SC ACKs are either separate or piggybacked (e.g., QUIC: UDP options)

Next: two example use cases
— Written “QUIC”, but should work the same way for, e.g., TCP or SCTP



Example use case 1:
link-specific congestion control

* Adjacent to fluctuating-capacity link

— SC proxy’s congestion control should track available capacity better,
and needs data packets for when capacity becomes available
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Example use case 2:
WiFi AP ACKs on behalf of host

* AP keeps track of transport packet — ACK mapping
* Creates a transport ACK to the server when LL ACK from client arrives

— Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

WiFi AP = _
Server SC proxy Client
QUIC connection
Quic | * . . | QUIC




Example use case 2:
WiFi AP ACKs on behalf of host

* AP keeps track of transport packet — ACK mapping

* Creates a transport ACK to the server when LL ACK from client arrives
— Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

WiFi AP =

Server SC proxy Client
QUIC connection
<
QUI(; . . QUIC

'S¢

Service choice: | will
treat SC ACKs like client
ACKs (but keep data in

the send buffer until

client cumulatively
ACKs, just in case).




Example use case 2:
WiFi AP ACKs on behalf of host

* AP keeps track of transport packet — ACK mapping

* Creates a transport ACK to the server when LL ACK from client arrives
— Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

WiFi AP =

Server SC proxy Client
QUIC connection
Quic | * . . | QUIC

| 2N
| hash

SC ACKs
SC N SC

\\

Service choice: | will SC notification:
treat SC ACKs like client An ACK has arrived.
ACKs (but keep data in

the send buffer until

client cumulatively
ACKs, just in case).




Example use case 2:
WiFi AP ACKs on behalf of host

* AP keeps track of transport packet — ACK mapping

* Creates a transport ACK to the server when LL ACK from client arrives
— Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

WiFi AP =

Server SC proxy Client
QUIC connection
<
QUIC N ~ | QuiC
t
| hash
SC ACK:
SC < > SC
\
Service choice: | will ification: . . . ;
ervice choice: | wi SC not:f:cat/qn. Minimal changes to QUIC: server + client side
treat SC ACKs like client An ACK has arrived. ) . i~ i
ACKs (but keep data in e Server: local interface communication
the send buffer until * If the service is chosen:

* Via QUIC, tell client to send fewer ACKs

client cumulatively
*  Accept ACKs from SC, but keep data in send buffer

ACKs, just in case).




Conclusion

* We believe this is a way forward to solve the e2e encryption /
ossification / PEP dilemma

e Research needed

— How to limit hashing / SC ACK overhead?

— The devil is in the details: what are viable use cases?

* E.g., link-specific congestion control use case: different from TCP connection
splitter, SC entities must find and trust each other
— SC proxy can just send SC ACKs back towards the sender; doesn’t need to trust anyone
— Sender-side SC entity needs to trust the SC proxy... but the SC proxy can’t easily guess hashes
— Path changes: if there’s a different SC proxy on the new path, it just begins to send SC ACKs
— ... but there needs to be a setup phase, or else we could get N SC proxies on a path, all ACKing ©

— Can this really be done independent of the main protocol?



Thanks!

Questions?



