Service Awareness rather than
Path Awareness

Michael Welzl (University of Oslo),
Keith Winstein (Stanford University)

PANRG, IETF 113
24. 3. 2022
Vienna, Austria

The problem

Performance Enhancing Proxies (PEPs) sometimes let TCP work
better than QUIC, e.g. over satellites

— Has anyone tried QUIC over mmWave?

— Encrypting transport headers solves ossification, but at a cost

PEPs are not strictly evil
— They try to be useful, and sometimes succeed

— Claim: ossification is at least partially due to transparent proxy design
(they must cheat, so they must make assumptions about header fields)

MASQUE is not transparent. Add PEP functions there?
— Maybe? But this might cause ossification problems again...
— Perhaps depending on the PEP function

What we suggest

» Separation of concerns

— A separate “sidecar (SC)” protocol for non-critical PEP functions,
independent of main protocol

— Non-criticality ensured by letting main protocol choose services
over a local sidecar interface (on the same host!)

* Minimize changes to “main” protocol

— Sidecar ossification means: the PEP function does not improve
further (bad but harmless)

* PEP functions are use cases of the sidecar protocol

Sidecar functionality

Data plane: directly affect main protocol

— Without parsing header: queue management, re-transmission, ..

Control plane

— Local (on host) information exchange with main protocol

SC ACKs between sidecar entities

— Hash over main protocol’s transport header
— SC ACKs are either separate or piggybacked (e.g., QUIC: UDP options)

Next: two example use cases
— Written “QUIC”, but should work the same way for, e.g., TCP or SCTP

Example use case 1:
link-specific congestion control

* Adjacent to fluctuating-capacity link

— SC proxy’s congestion control should track available capacity better,
and needs data packets for when capacity becomes available

Server SC proxy Link with Client
Sfluctuating
QUIC connection capacity
QuicC | = . . | QUIC

Example use case 1:
link-specific congestion control

* Adjacent to fluctuating-capacity link

— SC proxy’s congestion control should track available capacity better,
and needs data packets for when capacity becomes available

Server SC proxy Link with Client
Sfluctuating
QUIC connection capacity
Quic | * . . | QUIC
i }
/ SC
=

Service choice:
If you tell me to
increase my
cwnd, | will.

Example use case 1:
link-specific congestion control

* Adjacent to fluctuating-capacity link

— SC proxy’s congestion control should track available capacity better,
and needs data packets for when capacity becomes available

Server SC proxy Link with Client
Sfluctuating
QUIC connection capacity
<
QUIC . R QUIC
i } hc% % uence
SC ACK. rate SC ACK:
S S
S/ SC \ \\ SC | « SC
Service choice: SC notification:
If you tell me to An ACK has arrived,
increase my increase your cwnd.
cwnd, | will.

Example use case 1:
link-specific congestion control

* Adjacent to fluctuating-capacity link

— SC proxy’s congestion control should track available capacity better,
and needs data packets for when capacity becomes available

Server SC proxy Link with Client
Sfluctuating
QUIC connection capacity
<
QUIC R ~ | QuIC
i } h CA % uence
SC ACK: rate SC ACK.
SC - u SC | « i SC
/L YN

Service choice: SC notification:

If you tell me to An ACK has arrived, Minimal changes to QUIC: only server side
increase my increase your cwnd. local interface communication
cwnd, | will. If the service is chosen:

increase cwnd when SC tells us to

Example use case 2:
WiFi AP ACKs on behalf of host

* AP keeps track of transport packet — ACK mapping
* Creates a transport ACK to the server when LL ACK from client arrives

— Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

WiFi AP = _
Server SC proxy Client
QUIC connection
Quic | * . . | QUIC

Example use case 2:
WiFi AP ACKs on behalf of host

* AP keeps track of transport packet — ACK mapping

* Creates a transport ACK to the server when LL ACK from client arrives
— Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

WiFi AP =

Server SC proxy Client
QUIC connection
<
QUI(; . . QUIC

'S¢

Service choice: | will
treat SC ACKs like client
ACKs (but keep data in

the send buffer until

client cumulatively
ACKs, just in case).

Example use case 2:
WiFi AP ACKs on behalf of host

* AP keeps track of transport packet — ACK mapping

* Creates a transport ACK to the server when LL ACK from client arrives
— Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

WiFi AP =

Server SC proxy Client
QUIC connection
Quic | * . . | QUIC

| 2N
| hash

SC ACKs
SC N SC

\\

Service choice: | will SC notification:
treat SC ACKs like client An ACK has arrived.
ACKs (but keep data in

the send buffer until

client cumulatively
ACKs, just in case).

Example use case 2:
WiFi AP ACKs on behalf of host

* AP keeps track of transport packet — ACK mapping

* Creates a transport ACK to the server when LL ACK from client arrives
— Client can send fewer transport ACKs. Reduces overhead: fewer collisions, less power wasted

Dzmitry Kliazovich, Simone Redana, Fabrizio Granelli: “Cross-layer error recovery in wireless access networks:
The ARQ proxy approach”, International Journal of Communication Systems, Vol. 25, n. 4, pp 213-222, 2011

WiFi AP =

Server SC proxy Client
QUIC connection
<
QUIC N ~ | QuiC
t
| hash
SC ACK:
SC < > SC
\
Service choice: | will ification: . . . ;
ervice choice: | wi SC not:f:cat/qn. Minimal changes to QUIC: server + client side
treat SC ACKs like client An ACK has arrived.) . i~ i
ACKs (but keep data in e Server: local interface communication
the send buffer until * If the service is chosen:

* Via QUIC, tell client to send fewer ACKs

client cumulatively
* Accept ACKs from SC, but keep data in send buffer

ACKs, just in case).

Conclusion

* We believe this is a way forward to solve the e2e encryption /
ossification / PEP dilemma

e Research needed

— How to limit hashing / SC ACK overhead?

— The devil is in the details: what are viable use cases?

* E.g., link-specific congestion control use case: different from TCP connection
splitter, SC entities must find and trust each other
— SC proxy can just send SC ACKs back towards the sender; doesn’t need to trust anyone
— Sender-side SC entity needs to trust the SC proxy... but the SC proxy can’t easily guess hashes
— Path changes: if there’s a different SC proxy on the new path, it just begins to send SC ACKs
— ... but there needs to be a setup phase, or else we could get N SC proxies on a path, all ACKing ©

— Can this really be done independent of the main protocol?

Thanks!

Questions?

