On the ineffectiveness of QUIC PADDING against website fingerprinting

Ludovic Barman, <u>Sandra Siby</u>, Christopher Wood, Marwan Fayed, Nick Sullivan, Carmela Troncoso

IETF PEARG, 21 March 2022

What is website fingerprinting?

Adversary

What is website fingerprinting?

Adversary

What is website fingerprinting?

Website Fingerprinting on QUIC

Website Fingerprinting on QUIC

Website fingerprinting on QUIC has already been studied before [1]

Conclusion: It is not harder to fingerprint QUIC as compared to TCP

[1] <u>https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00</u>

Website Fingerprinting on QUIC

Website fingerprinting on QUIC has already been studied before [1]

Conclusion: It is not harder to fingerprint QUIC as compared to TCP

QUIC RFC specifies PADDING frame [2]:

"Padding can be used ... to provide protection against traffic analysis ..."

[1] <u>https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00</u>
[2] <u>https://www.rfc-editor.org/rfc/rfc9000.html</u>

Dataset

Built from lists of popular domains

k-FP features + Random Forest / VarCNN

Undefended Traffic: 96% <u>F-Score</u>

Undefended Traffic: 96% F-Score

Undefended Traffic: 96% F-Score

.

ı.

.

.

.

Size-based features are important

~94%

Undefended Traffic: 96% F-Score

Network defenses offer low protection with high costs

Ex: For 10% reduction in F-Score, we need >50% overhead

Constrained Adversary: Limited view

Constrained Adversary: Limited view

A few large ASes can successfully run attacks.

Constrained Adversary: Limited view

A few large ASes can successfully run attacks.

Timings to Google resources is a low-cost fingerprint: 77.9% F-score

Sampled NetFlow	Undefended (F-score)	Defended (F-Score)
NetFlow 100%	90.5	53.1
NetFlow 10%	66.4	33.1
NetFlow 1%	41.7	21.6
NetFlow 0.1%	16.8	8.6

Sampled NetFlow	Undefended (F-score)	Defended (F-Score)
NetFlow 100%	90.5	53.1
NetFlow 10%	66.4	33.1
NetFlow 1%	41.7	21.6
NetFlow 0.1%	16.8	8.6
		Random basel 0.67%

Sampled NetFlow	Undefended (F-score)	Defended (F-Score)
NetFlow 100%	90.5	53.1
NetFlow 10%	66.4	33.1
NetFlow 1%	41.7	21.6
NetFlow 0.1%	16.8	8.6

Most of the privacy gain comes from the sampling process than the defense.

Network layer

Network layer defenses cannot efficiently hide global features without application layer information.

Network layer

Application layer

Analysing web pages

Analysing web pages

18% of pages have < 20% first party resources

24% of pages have > 50% Google resources

Analysing web pages

18% of pages have < 20% first party resources

Third parties contribute a large proportion of resources

All parties must participate in the protection of resources

24% of pages have > 50% Google resources

Application layer defenses

Packet-based and Trace-based padding

Padding is, once again, ineffective

Best case: reduces F-Score by 16% with total cost of ~8MB per resource

Application layer defenses

Packet-based and Trace-based padding

Padding is, once again, ineffective

Best case: reduces F-Score by 16% with total cost of ~8MB per resource

Dummy Injection

Injecting dummies is more effective, but comes with deployment complexity.

Example: Injecting 5 dummies on average reduces F-Score by 39% with total cost of ~137kB per resource

Summary

Application-agnostic network layer defenses based on PADDING are inadequate because they fail to hide global features.

Application-layer defenses are more effective but suffer from deployment challenges:

- Coordination between parties
- Developer practices
- Client experience

Paper: https://arxiv.org/abs/2203.07806

Get in touch: sandra.siby@epfl.ch @sansib

Backup

39

Application layer defenses: Padding total sizes

Application layer defenses: Injecting dummies

