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Website Fingerprinting on QUIC

[1] https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00



https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00

Website Fingerprinting on QUIC

Website fingerprinting on QUIC has already been studied before [1]

Conclusion: It is not harder to fingerprint QUIC as compared to TCP

[1]]

https://datatracker.ietf.ora/meeting/1171/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00

[2]!

https://www.rfc-editor.org/rfc/rfc9000.html


https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00
https://www.rfc-editor.org/rfc/rfc9000.html
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Dataset

Built from lists f popular domains

~70% QUIC on average
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Unconstrained Adversary

Undefended Traffic: 96% F-Score
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Unconstrained Adversary

Undefended Traffic: 96% F-Score
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Size-based features are important
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Unconstrained Adversary

Undefended Traffic: 96% F-Score
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Unconstrained Adversary

Undefended Traffic: 96% F-Score
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Unconstrained Adversary

Undefended Traffic: 96% F-Score
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Unconstrained Adversary

Network defenses offer low protection with high costs

Ex: For 10% reduction in F-Score, we need >50% overhead
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Constrained Adversary: Limited view

en [%]

Pages se

100 -
75 -
50 A

25

E'
A mV‘.II-

100 A
il
50 - II |
I,

en/page [%]

Routes se
o

AS

A few large ASes can successfully run attacks.

il
__KL“'M
AS

25



Constrained Adversary: Limited view

100 A / - II
Iii ol
1l Ml
25 - = S 925 - | i
= _M
AS

en/page [%]

en [%]

Pages se

o
1
—
—
I
—
=]
]
m
n
u
I
I
|
|
|
|
|
F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rout
o

A few large ASes can successfully run attacks.

Timings to Google resources is a low-cost fingerprint: 77.9% F-score
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Constrained Adversary: Limited processing
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Sampled NetFlow
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Constrained Adversary: Limited processing
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Constrained Adversary: Limited processing
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Most of the privacy gain comes from the sampling process than the defense.
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Network layer defenses cannot efficiently hide global features without application layer
information.







Analysing web pages

Visited site
(first party)

example.com

=

Ad from tracker.com
(third party)

Image from img.example.com
(first party)

33



Analysing web pages

18% of pages have < 20%
first party resources

24% of pages have > 50%
Google resources
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Analysing web pages
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Application layer defenses

» Packet-based and Trace-based padding I . m I . =

Padding is, once again, ineffective

Best case: reduces F-Score by 16% with total cost of ~8MB per resource
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Application layer defenses

» Packet-based and Trace-based padding I . m I . =

Padding is, once again, ineffective

Best case: reduces F-Score by 16% with total cost of ~8MB per resource

» Dummy Injection I.- S I b =

Injecting dummies is more effective, but comes with deployment complexity.

Example: Injecting 5 dummies on average reduces F-Score by 39% with total cost of
~137kB per resource
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Summary

» Application-agnostic network layer defenses based on PADDING are
inadequate because they fail to hide global features.

» Application-layer defenses are more effective but suffer from deployment
challenges:

» Coordination between parties

» Developer practices

Paper: https://arxiv.org/abs/2203.07806

» Client experience

Get in touch: sandra.siby@epfl.ch  @sansib
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Application layer defenses: Padding total sizes
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Application layer defenses: Injecting dummies
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