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Website fingerprinting on QUIC has already been studied before [1]

Conclusion: It is not harder to fingerprint QUIC as compared to TCP

[1] https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00

https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00
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Website fingerprinting on QUIC has already been studied before [1]

Conclusion: It is not harder to fingerprint QUIC as compared to TCP

[1] https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00 
[2] https://www.rfc-editor.org/rfc/rfc9000.html

QUIC RFC specifies PADDING frame [2]:  

“Padding can be used … to provide protection against traffic analysis …”

https://datatracker.ietf.org/meeting/111/materials/slides-111-pearg-website-fingerprinting-in-the-age-of-quic-00
https://www.rfc-editor.org/rfc/rfc9000.html
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Dataset
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QUIC-dominant dataset (150 pages)

~70% QUIC on average

Built from lists of popular domains
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Undefended Traffic:  96% F-Score



Unconstrained Adversary
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Undefended Traffic:  96% F-Score

Random baseline:  
0.67%
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Undefended Traffic:  96% F-Score

Size-based features are important
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Undefended Traffic:  96% F-Score
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Undefended Traffic:  96% F-Score
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Undefended Traffic:  96% F-Score

Dummy injection
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Hide global features 
(pad total size) 

~92%

Hide local features  
(pad individual packets) 

~94%

Network defenses offer low protection with high costs 

Ex: For 10% reduction in F-Score, we need >50% overhead
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A few large ASes can successfully run attacks.
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A few large ASes can successfully run attacks.

Timings to Google resources is a low-cost fingerprint: 77.9% F-score 
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Sampled NetFlow Undefended (F-score) Defended (F-Score)

NetFlow 100% 90.5 53.1

NetFlow 10% 66.4 33.1

NetFlow 1% 41.7 21.6

NetFlow 0.1% 16.8 8.6
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Constrained Adversary: Limited processing
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Sampled NetFlow Undefended (F-score) Defended (F-Score)

NetFlow 100% 90.5 53.1

NetFlow 10% 66.4 33.1

NetFlow 1% 41.7 21.6

NetFlow 0.1% 16.8 8.6

Most of the privacy gain comes from the sampling process than the defense.
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Network layer

Network layer defenses cannot efficiently hide global features without application layer 
information.
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Network layer Application layer



Analysing web pages

!33



Analysing web pages

!34

0 50 100
First party resources [%]

0

100

N
u
m
b
er

of
p
ag
es

0 25 50 75
Google resources [%]

0

100
N
u
m
b
er

of
p
ag
es

18% of pages have < 20% 
first party resources

24% of pages have > 50% 
Google resources



Analysing web pages
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18% of pages have < 20% 
first party resources

24% of pages have > 50% 
Google resources

All parties must 
participate in the 

protection of 
resources

Third parties 
contribute a large 

proportion of 
resources
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‣Packet-based and Trace-based padding

Padding is, once again, ineffective

Best case: reduces F-Score by 16% with total cost of ~8MB per resource
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‣Packet-based and Trace-based padding

Padding is, once again, ineffective

Best case: reduces F-Score by 16% with total cost of ~8MB per resource

‣Dummy Injection

Injecting dummies is more effective, but comes with deployment complexity.

Example: Injecting 5 dummies on average reduces F-Score by 39% with total cost of 
~137kB per resource



Summary

‣ Application-agnostic network layer defenses based on PADDING are 
inadequate because they fail to hide global features. 

‣ Application-layer defenses are more effective but suffer from deployment 
challenges: 

‣ Coordination between parties 

‣ Developer practices 

‣ Client experience
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Paper: https://arxiv.org/abs/2203.07806  

Get in touch: sandra.siby@epfl.ch     @sansib 

https://arxiv.org/abs/2107.11309
mailto:sandra.siby@epfl.ch
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Application layer defenses: Padding total sizes
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Application layer defenses: Injecting dummies
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