RBS (Recursive BitString Structure)
for Multicast Source Routing over IPv6

draft-xu-msr6-rbs-00

Toerless Eckert, Futurewei USA (tte@cs.fau.de)
Bing Xu (bing.xu@huawei.com)
Xuesong Geng (gengxuesong@huawei.com)

PIM WG, 03/24/2022
What it is

Native IPv6 / SRv6 solution for P2MP

Stateless (no per-hop multicast tree state) = source-routed

Intended to be part of SRv6 architecture for IPv6/SRv6 only networks
 Goal: support/Interop with all possible IPv6 functions / Extension Headers, SRv6 functions.
 Goal: No desire for separate L3 forwarding planes beside IPv6 to support multicast

No such solution today in IETF standards work.
 Stateless SRv6 is unicast only today.
 but several draft proposals exist (competing/complementary ?)

Core property of this proposal “Recursive Bitstring Structure” (RBS) addressing
How it works (high level)

Compressed Tree “Address” at A
1) Describes whole tree!!
2) Rtr A examines its adjacency bits
3) Sees two bits are set. Creates two packet copies
4) For each copy, (active) address needs to adjust address

(active) Compressed Tree “Address” at B
(active) Compressed Tree “Address” at C

Per-hop “rewrite” operation options:
A) rewrite compressed tree to only sub-tree
 Not desired by RFC8200 (but not prohibited?)
B) Adjust “Segment Offset” equivalent
C) Adjust “Segment Pointer / Length”
 More compact compression than B)
Why RBS

Traffic steering

- Enables guaranteed resources paths (bandwidth/latency) with PCE / Admission controller
- DetNet/PREOF path diversity (zero loss multicast), Steiner trees (minimum total cost)
- SP network capacity optimization through non-ECMP load splitting (95% of what SR is being used for)
- Predictable, simple convergence: no micro-loops (as in hop-by-hop FIB reconvergence)

RBS vs. “flat bitstrings” and scalability/performance

- PIM “Sparse Mode”: “sparse set of receivers from large set of (possible) receivers” (core PIM goal)

Simple thought example:

- 2560 destinations (PE), max 256 flat bitstring length = 10 bitstrings required.
- Multicast packet to 10 destinations
- Flat bitstring: may need to send 1...10 packets depending which bitstring the 10 destinations are in
- RBS: always only need to send one packet (in validated topologies).

Aka: even though RBS needs to encode steering hops, it could be even more efficient in large networks

Scaling issues with flat bitstrings significantly increases when traffic steering is needed!
RBS – Encode and Process (high level)
Components length are in bits (most compact). Padding at the end
If router A has N neighbors, its bitstring is N bits long.
Bitstring replication logic same as for flat bitstring traffic steering
 bit-i set => send copy to neighbor(i) (generalized: adjacency(i)).
Additional forwarding plane work beyond flat bitstring:
 For each copy to an adjacency: select the recursive unit and “activate” it
 A) Extract and adjust “pointers” (s/Recursive Unit A/Recursive Unit B/)
 B) (not shown) Adjust (segment) “pointers” in fixed field to point to new Recursive Unit

Complete Recursive Bitstring Structure (RBS) Address

RBS FIB for router A (assuming N = 4)

<table>
<thead>
<tr>
<th>Index</th>
<th>Recursive</th>
<th>Segment IPv6addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

RBS address for B is of course much shorter than the one for A with extract/replace
IPv6 Multicast Routing Header for RBS
compares with SRH (RFC8754, unicast)

<table>
<thead>
<tr>
<th>Architecturally/operationally the same, except for replication” ?!</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRH: RH carries segment path</td>
</tr>
<tr>
<td>One uncompressed solution</td>
</tr>
<tr>
<td>8 years later: work on one compressed option</td>
</tr>
<tr>
<td>RBS: RH carries segment tree</td>
</tr>
<tr>
<td>RBS: One proposed compressed option</td>
</tr>
<tr>
<td>Design extensibility (for alternatives ?)</td>
</tr>
</tbody>
</table>

Segment-by-Segment forwarding by swapping IPv6-Dest from next-segment

| Only one next-segment (unicast) |
| One or more next-segments (replication) |
| **Same set of egress TLV functionality (as applicable) (TBD)** |

Per transit-hop programmability (only when not compressed ?!)
Not considered (yet) no identified use-cases

<table>
<thead>
<tr>
<th>IPv6 Multicast Routing Header for RBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare with SRH (RFC8754, unicast)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPv6 Multicast Routing Header for RBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare with SRH (RFC8754, unicast)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPv6 Multicast Routing Header for RBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare with SRH (RFC8754, unicast)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPv6 Multicast Routing Header for RBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare with SRH (RFC8754, unicast)</td>
</tr>
</tbody>
</table>
Next steps / IETF process

Assuming there is an SRv6 (SPRING/PIM) community that wants this (and vote to adopt)
How to split the work between “use-case WGs” (SPRING/PIM) and 6MAN
What to do so this will be easier / faster / Better 2nd time around than with SRH?

Would we need an additional “arch” document in PIM?
Similar to RFC 8986/SRv6-arch?
Assume the EH spec would go to 6MAN
Can we bake extensibility / modification by “use-case” WG better/easier into EH specification than with RFC8754?
E.g.: Maybe we want multiple multicast-tree address compression option?
E.g.: Define permissible per-segment modifications (shorten, rewrite one/two fields, rewrite more?)
The End

Please chime in on PIM-WG for the solution overall