Privacy Preserving Measurement (IETF 113)

Eric Rescorla ekr@rtfm.com

2022-03-23

Eric Rescorla ekr@rtfm.com

Privacy Preserving Measurement (IETF 113)

2022-03-23 1 / 24

• = • •

Overview

- Measurement scenarios
- Anonymous measurement
- MPC-based privacy-preserving measurement techniques
- Technical architecture

∃ >

Many situations where we want to learn about people

- Public research (e.g., the census)
 - Demographics
 - Income
 - Medical issues
- Product development
 - Which features do they use/don't use?
 - How much do they use them?
 - Where/why are products failing?
- Behavioral measurements
 - Discovering new Web sites
 - Which information are people most interested in?

This information is very useful

- But can be very sensitive
 - Medical issues, income, sexual orientation, etc.
- Even "less" sensitive data can be very revealing
 - Especially when you put a lot of "less" sensitive data together

Feb 16, 2012, 11:02am EST

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

Kashmir Hill Former Staff

Welcome to The Not-So Private Parts where technology & privacy collide

What do we really want to measure?

• Mostly we want *aggregates*

- What is the distribution of people's income?
- What is relationship between income and height?
- What are the most popular Web sites?
- Need to slice the data multiple ways
 - Just look at a given region
 - Compare two variables
- Individual values are neither necessary nor useful
 - As long as we can compute the aggregates

Measurement Types

- Simple aggregates (mean, median, sum, histograms...)
- Relationships between multiple values (correlation, OLS, ...)
- Common strings ("heavy hitters")

Example Use Case: User Interests

- Useful to measure what kinds of sites users visit
 - Bucket sites by topic
 - Count the number of visits to/minutes spent on each topic
 - But... some topics are sensitive
- Problem statement: collect distribution of time spent on each type of site

Example: Use Case: Web Site Issues

- Web compatibility is a big problem
 - Some sites will not render properly in some browsers
 - Big problem for smaller browsers like Safari and Firefox
 - Often we can detect breakage on the client
- Many Web sites fingerprint users
 - Measure persistent properties to create a per-browser "fingerprint"
 - This can be used for tracking
 - Often detectable on the client
- No way to learn about these issues
 - We need to know the site
 - But browsing history is sensitive
- Problem statement: collect the sites where the client sees issues

Privacy Threats

• Tying sensitive data directly to identifying information

- Directly via user identifiers (E-mail, cookies, etc.)
- Indirectly via metadata (IP address, E.164 number, etc.)
- Collecting sensitive data along with non-sensitive identifying information
 - Example: (birthday, zip code, initials) \rightarrow income

It was found that 87% (216 million of 248 million) of the population in the United States had reported characteristics that likely made them unique based only on 5-digit ZIP, gender, date of birth. — Sweeney, 2014 [Swe00]

A B A A B A

Anonymized Data Collection with OHAI

- Basic idea: collect user information without identifiers
- Practically speaking
 - Strip direct identifiers on the client side
 - Strip metadata using a proxy

- Example technologies:
 - Connection-level proxies (IPsec, RFC 2817 CONNECT, MASQUE)
 - Application-level proxies (OHAI)

Good Use Cases for Anonymization

- Boosting the privacy of semi-sensitive data
 - Important: this requires that the proxy and server do not collude
 - Example: existing browser Telemetry is done with no privacy
- Individual values where you don't need to "dig into" the data
- Freeform data
 - E.g., JSON blobs
- Anything that needs an answer
 - DNS requests
 - Safe Browsing queries

Bad Use Cases for Anonymization

• High dimensionality data (statistical queries)

- Multiple variables that need to be reported together
- When you want to look at subgroups
- Any time you want to do correlation/regression
- Anonymized data needs to be disaggregated to prevent de-anonymization
- Collecting common values (heavy hitters)
 - The "top N" values common > t users
 - Anonymized data collects every value and depends on reporting only common values

Cryptography to the Rescue

Solutions to both statistical queries and heavy hitters share a common framework:

- Split data between two servers
- Each server computes aggregated shares
- Aggregate shares combined to produce final value

A B A A B A

Trust Model

- Client's requirement: The two servers do not collude
 - If they do, they can compute individual values
 - The servers enforce minimum batch sizes and query limits
- Collector's requirement: Both servers execute the protocol correctly
 - Either server can distort the results
- Difficult to verify this
 - Collusion can happen through side channels
 - If traffic goes through the leader, helper can just share keys
 - Point-in-time audits are possible

Cryptographic Protocol: Prio [CGB17]

- Useful for computing numeric aggregates (sum, mean, etc.)
- Each client *i* holds a value x_i, then secret shares it with each server
 - Generates random $R_i \leftarrow \mathbb{F}_p$
 - Sends $x_i R_i(modp)$ to server 1
 - Sends *R_i* to server 2
- Each server adds up their shares
 - Server 1: $\sum_i x_i R_i$
 - Server 2: $\sum_i R_i$

• Now add these up: $\sum_{i} x_i - R_i + \sum_{i} R_i = \sum_{i} x_i + \sum_{i} R_i - \sum_{i} R_i = \sum_{i} x_i$

• • = • • = •

What else can Prio compute?

Arithmetic mean Product Geometric mean Variance and stddeviation Boolean OR, AND MIN, MAX Ordinarily least squares (OLS) $\sum_{i} x_{i}/i$ $exp(\sum_{i} log(x_{i}))$ From product $From <math>\sum_{i} x_{i}$ and $\sum_{i} (x_{i})^{2}$

The trick is finding the right encoding

. . .

. . .

< ∃ > < ∃

What about bogus data?

- Plausible but false
 - "I am 180cm tall" when I am actually 175cm
 - A problem with any surveying technique
 - Solution: live with somewhat noisy data
- Completely ridiculous
 - "I am 1km tall" (or worse, "I am -1km tall")
 - · Easy to remove with standard systems by filtering
 - ... but with Prio the data is encrypted
 - Solution: each submission comes with a zero-knowledge proof of validity
 - "This height report is between 100 and 200cm"
 - Servers work together to validate the proof
 - Only aggregate submissions with valid proofs

Collecting User Interests with Prio

- Each user interest gets a bucket
- Client reports the time \mathcal{T} spent in each bucket (including 0s) with Prio
- Use Prio to sum them up¹
- Servers only learn aggregates, not values for each category

Cryptographic Protocol: Heavy Hitters ("Hits") [BBCG⁺21]

- Each client submits a string (e.g., a URL)
 - Report the *N* most frequent strings
- Servers jointly can compute the number of strings with prefix p
 - Can use binary search to compute the most common strings
 - "How many strings have prefix p||0 versus p||1

A B A A B A

Collecting Broken Sites with Hits

- Client creates one report for each site which is broken
- Use Hits to determine the top sites
- Servers only learn the most important sites, not who reported them

Subset Queries

Submissions can be tagged with demographic data

- Example: (birthday, zip code, initials) \rightarrow Encrypted(income)
- This is safe because the sensitive information is encrypted
- Servers can then compute aggregates over subsets
- Repeated queries can be used to determine individual values
 - Querying for S and $S \setminus I$ reveals I's value
 - Defenses
 - Minimum batch size
 - Anti-replay
 - Differential privacy randomization

A B A A B A

Privacy Preserving Measurement Protocol draft-gpew-priv-ppm-00

- A generic, modular, protocol for privacy-preserving measurement
 - Initially implementing Prio and Hits
 - Compatible with multiple cryptographic algorithms ("verifiable distributed aggregation functions" – see CFRG presentation for details)
- Build on top of HTTPS
 - Easy to implement with existing services infrastructure

PPM System Architecture

Questions?

Eric Rescorla ekr@rtfm.com Privacy Pres

Privacy Preserving Measurement (IETF 113)

 ▲ ■ ▶ ■

 <th</th>

 <th

< □ > < □ > < □ > < □ > < □ >

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

Lightweight techniques for private heavy hitters. Cryptology ePrint Archive, Report 2021/017, 2021. https://eprint.iacr.org/2021/017.

Henry Corrigan-Gibbs and Dan Boneh.
Prio: Private, robust, and scalable computation of aggregate statistics.

In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), pages 259–282, Boston, MA, March 2017. USENIX Association.

Latanya Sweeney.

Simple demographics often identify people uniquely. *Health (San Francisco)*, 671(2000):1–34, 2000.

• • = • • =