
Architecture of the Upload Flow

IETF 113 (PPM)
Christopher Patton

1

Architecture of Upload Flow - IETF 113 (PPM)

Overview

2

● PPM is three "sub-protocols" executed simultaneously

○ Upload Flow – Client pushes report (encrypted
input shares) to the Leader

○ Aggregate Flow – Leader and Helper(s) interact
to verify and aggregate reports and compute
aggregate shares

○ Collect Flow – Collector pulls encrypted
aggregate shares from the Leader

Client Leader

HelperCollector

resu
lts

reports

aggregation

Architecture of Upload Flow - IETF 113 (PPM)

Leader-Upload / Split-Upload

3

Client Leader

Helper

reports

aggregation

Leader-Upload (status quo) – Report
contains all encrypted input shares

Client

Leader

Helper

report share

aggregation

Split-Upload (PR #174) – Report split
into report shares, each containing the
encrypted input share of the recipient

report share

https://github.com/abetterinternet/ppm-specification/pull/174

Architecture of Upload Flow - IETF 113 (PPM)

Motivations for Leader-Upload

4

● #1 Only the leader has high capacity requirements

○ Upload Flow – HIGH capacity

■ bandwidth = report_size * num_clients *
reports_per_sec

■ Clients are online, so needs to be fast

○ Aggregate Flow – MODERATE capacity

■ Bandwidth reduced by factor of O(1) to
O(report_size), depending on the VDAF

■ Leader can throttle traffic if needed

○ Collect Flow – LOW capacity

Client

Leader

Helper

report share

aggregationreport share

Split-Upload

Client Leader

Helper

reports

aggregation

Leader-Upload

Architecture of Upload Flow - IETF 113 (PPM)

Motivations for Leader-Upload

5

● #2 Resolves data race in Split-Upload

○ Between:

■ Leader receives report share and initiates
aggregation flow (doesn't know if the helper
has received its share yet)

■ Helper receives report share

○ Split-Upload requires additional retry logic to
resolve this (or else tolerate additional data loss)

■ We have other sources of data loss already,
so maybe not so bad?

Client

Leader

Helper

report share

aggregationreport share

Split-Upload

Client Leader

Helper

reports

aggregation

Leader-Upload

Architecture of Upload Flow - IETF 113 (PPM)

Motivations for Leader-Upload

6

● #3 In Split-Upload, upload flow is more likely to fail
since there are two HTTP requests instead of just one

Client

Leader

Helper

report share

aggregationreport share

Split-Upload

Client Leader

Helper

reports

aggregation

Leader-Upload

Architecture of Upload Flow - IETF 113 (PPM)

Downside of Leader-Upload

7

● Aggregation flow has higher-than-necessary bandwidth

○ Significant problem for Poplar [BBCG+21]

■ Size of both input shares are O(N) where N is the
length (in bits) of the input strings. Concretely:

● N=32 ⇒ ~2KB/share
● N=64 ⇒ ~4KB/share
● N=128 ⇒ ~8KB/share

■ Poplar requires N runs to compute heavy hitters
(spec currently requires retransmitting report
shares at the start of each aggregation run)

○ Higher bandwidth ⇒ higher egress cost (issue #130)

Client

Leader

Helper

report share

aggregationreport share

Split-Upload

Client Leader

Helper

reports

aggregation

Leader-Upload

https://eprint.iacr.org/2021/017
https://github.com/abetterinternet/ppm-specification/issues/130

Architecture of Upload Flow - IETF 113 (PPM)

Options

8

● Option #1 – Stick with Leader-Upload, but mitigate its
downside

○ Change the protocol so that report shares need
only be transmitted once (in the first aggregation
run)

■ Question: Is this enough?

● Option #2 – Take Split-Upload (PR #174) and leave
mitigation of downsides up to the deployment

○ One can "emulate" Leader-Upload by putting an
Ingestor between Client and Aggregators

■ Question: In what sense is the Ingestor
trusted or untrusted?

Leader

Helper

report share

aggregationreport share

Client
report shares

Ingestor

Client Leader

Helper

reports

aggregation

https://github.com/abetterinternet/ppm-specification/pull/174

